Optical MEMS: Actuating Light

V.A. Aksyuk

Microsystems Research Bell Laboratories, Lucent Technologies

Optical MEMS for Telecom:

- Quality optical elements
- Precision positioning actuators
- Moderate speed
- High reliability

- Large number of elements
- High integration density

Key design features: <u>compliant mechanisms</u>, <u>electrostatics</u>, <u>stress engineering</u>

Nonlinear Effects - Numerical Modeling

Electrostatic Actuation

- no heat dissipation
- localized fields (good conductors) -no crosstalk
- no special materials wide range of fabrication processes

Excellent for <u>densely integrating multiple actuators</u>for optical applications!

Challenge:

- effective designs with *nonlinear* electrostatic force
- achieving *large amplitude* with low voltage

Compliant Mechanisms

Out

Microstar™ Micromirror

Pure flexure: no mechanical contact during operation

Flag switch / attenuator

<u>Static contact</u> <u>under load</u>: possible stiction, no wear **Scratch Drive**

Gears

Sliding contact under load: susceptible to friction, stiction and wear

Flag switch details.

Stress Engineering

Avoid or relieve: elastic elements

Use: nonlinear elastic elements

Create:

- use residual stress energy to power mechanical action, e.g. self-assembly
- use residual stress to achieve desired element shape

Electrostatic and Mechanical Nonlinearities

<u>Avoid</u>, better design (or an easy way out):

- strain-relieved mechanical elements
- comb drives

Use and control:

- majority of electrostatic actuators

Create:

- nonlinear spring elements
- bi-stable actuators

Effective analysis techniques are key Numerical tools are essential

Numerical Modeling

Electrostatics:

- weakly coupled problems, e.g. 2-axis mirror
- <u>strongly coupled</u> problems, e.g. Party Favor actuator

Mechanics:

- residual stress and buckling prediction and avoidance, strain-relieving suspension design
- cases involving mechanical contact

Analytical solutions for linear problems Numerical analysis to check analytical calculations or tackle nonlinear problems

Examples

- Key design features:
- compliant mechanisms
- electrostatics

 stress engineering Nonlinear effects Numerical modeling

- <u>Beam-steering mirror</u>:
 - electromechanical modeling
- <u>Mirror springs</u>:
 - residual stress effect
 - numerical technique for buckling prediction
- Double Hinge Mirror:
 - lever amplification, transmission mechanisms

- <u>Self-assembly</u>:
 - creative use of residual stress
- Party Favor tilting mirror:
 - residual stress engineering
 - zip-lock actuation with mechanical contact
- Bi-stable vertical actuator:
 - large-stress geometric plate nonlinearity

Beam-Steering Micromirror Design

Design parameters:

- Electrode size and shape
- Gap size
- Spring and gimbal geometry
- Mirror thickness

Device characteristics:

- Angular range
- Mirror size
- Mirror shape flatness
- Integration density fill factor no crosstalk
- Spring stiffness speed vibration sensitivity
- Drive voltage, angle vs. V curve control
- Stability and repeatability
- Reliability

Electrostatic Actuator, 1 degree of freedoom

$$\begin{split} E_{elec}(x) &= C(x) \frac{V^2}{2}; \quad F_{elec} = \frac{dE(x)}{dx} \\ F_{elec} &= \frac{V^2}{2} \frac{dC(x)}{dx} \qquad F_{mech} = k_{mech} x \\ k_{elec} &= \frac{dF_{elec}}{dx} = \frac{V^2}{2} \frac{d^2 C(x)}{dx^2} \\ f_{res} &= \frac{1}{2n} \sqrt{\frac{k_{total}}{m}}; \quad k_{total} = k_{elec} + k_{mech} \end{split}$$

- C comb capacitance
- k spring constant
- x deflection

Parallel-Plate Electrostatic Actuation

Torsional Electrostatic Actuation

height deflection angle electrode voltage plate width plate half-length torsion bar width torsion bar thickness torsion bar length mod. of elasticity

(two torsional hinges)

Lucent Technologies

Bell Labs Innyvations

As long as *g* << *L*, works for arbitrary electrode shape. Analytical solution can be obtained for more than 1 DOF. Does not work if edge effects are important, e.g.*g~L*.

Enhanced Range Electrode Layout

Increased angular range is obtained by using extra electrodes.

Numerical Techniques: Iterative Solver

Exact calculations of mechanically deforming conductors

~ 10 cycles per device position, very time consuming for multiple trajectories.

Do we really need coupled analysis?

This mirror moves as a collection of rigid bodies attached by springs
Springs do not contribute to electrostatic force

()_x

Θ_y

Mirror Moves As Solid Body

Tilts are the important DOF

Mechanics:

Force or torque:

 $\vec{F} = \hat{K}(\vec{x}) \cdot \vec{x}$ **Electrostatics:** $E = \frac{1}{2} V_i V_j C_{ij}(\vec{x})$ $\vec{F} = \nabla E(\vec{x})$

Equilibrium:

 $\hat{K}(\vec{x}) \cdot \vec{x} = \frac{V_i V_j}{2} \nabla C_{ij}(\vec{x})$ $\frac{1}{2}V^2 \frac{dC|\theta}{dC|\theta}$ E.g. 1D tilt case:

No need to iterate:

- calculate τ once (Mechanical solver)
- calculate $C(\theta)$ for all θ once (Electrostatic solver)
- calculate $V(\theta)$ using the above equation

Works for two tilt angles and voltages as well.

Zg

Z_m

More DOF - NO PROBLEM

Treat Z sag as perturbation

$$\hat{K}(\vec{x}) \cdot \vec{x} = \frac{V_i V_j}{2} \nabla C_{ij}(\vec{x})$$

- **1.** Calculate $V_0(\theta, z=0)$ as before
- **2.** Calculate $z_1(\theta, V_0)$ solving the same equation
- **3. Calculate new voltage** $V_{I}(\theta, z_{I}(\theta))$

Linear Elastic Element Design

Sources of stress

- residual
- packaging
- thermal mismatch

Some elastic elements *change their stiffness* considerably with applied external stress.

Nonlinear behavior results.

Buckling instabilities in extreme cases.

Straight Rod Design - Mechanical Modes

How do mode frequencies depend on stress ?

Resonance Frequency \rightarrow 0 : Buckling

Strain-relieving Spring Is Linear

Beam Deformations

$$z(x) = -F \cdot \frac{x^2(3L - x)}{6EI}; \quad z(L) = -F \cdot \frac{L^3}{3EI}$$
$$I = \frac{wt^3}{12}$$

- L length E Young's modulus
- $a \, \operatorname{width} G \, \operatorname{shear} \operatorname{modulus}$
- b thickness

$$(x) = T \cdot \frac{x}{CG}; \quad (L) = T \cdot \frac{L}{CG}$$

$$C = \frac{wt^3}{3}$$
 for $t \ll w$

Lucent Technologies

Boll Labs Innexations

Nonlinear mechanics

Instability!

$$F_{cr} = \frac{4.01}{L^2} \sqrt{EGIC} = 31 \,\mu N$$

(Landau, Lifshitz, "Theory of elasticity")

Double Hinge Tilting Mirror

- 10 degrees of continuous tilt
- 30 x 50 um mirrors
- moderate V < 100V
- high speed, f > 10kHz
- high fill factor (close-packed)
- no electromechanical crosstalk
- surface-micromachined

Angle amplification enables a more efficient actuation regime

Micromechanical transmission mechanism

Angle Amplification

For an actuator consisting of plates, maximum output work is typically:

- The *transmission mechanism* increases work produced by the actuator:
- <u>larger area can be used</u>
- actuator gap can be decreased,
- while maintaining the required range of motion

Transmission Mechanism Efficiency

To maximize efficiency, need to increase stiffness to unwanted deformations: <u>nonlinear</u> -

- mechanical contact friction
- straight torsion rod stress sensitivity

<u>linear</u> -

high aspect ratio spring

 submicron lithography

Stress Induced Mirror Deformation Issues

Residual stress in surface micromachining poly-Si is well-controlled Proper low-stress metallization materials are used

> Polysilicon = SOI (for curvature issues)

Correct choice of reflector Si thickness:

curvature - thickness - mass - speed (f) - spring stiffness - voltage

Deviation from desired shape less than $\frac{\lambda}{20}$

"Stress-induced curvature engineering in surface-micromachined devices," V. A. Aksyuk, F. Pardo, D. J. Bishop, SPIE Symposium on Design, Test, and Microfabriction of MEMS and MOEM, 30 March-1 April, 1999, Paris

Lucent Technologies Bell Labs Investions

Self-assembly During Release Makes Complex Structures Practical

V.A. Aksyuk et. al. Proc. SPIE v.3680 1999

Self-assembly Force Calculation

Self-assembly Using Residual Stress Is Robust and Reliable

- <u>Holding force</u> produced by mirror assembly arms exceeds <u>70μN</u>, compared to:
 - Maximum electrostatic force (Vmax on all four electrodes) 10 μ N
 - 500g mechanical shock 15μN
- 256-mirror array chips are released with <u>all mirrors assembled</u> and functional.
- <u>Uniform and accurate</u> lithographically defined final position.
- <u>Batch fabrication</u>, wet process.
- <u>No external probes, leads or power</u> are required.
- Was adapted to a <u>variety of devices</u>.

Party Favor device - fully coupled problem

- Exact beam shape not known
- Electrostatics depends on beam shape

Have to use coupled analysis

- Plate does not deform
- Springs do not contribute to electrostatics

Not a fully coupled problem

"Party Favor" Actuators

- Stress-engineered shape
- Deforming actuator plate
- "Zip-lock" operation with mechanical contact
- No fine-lithography features required

Large deflections and forces can be achieved at moderate or low voltages.

OUTPUT WORK:

Z

<u>BUT</u>:

- Maximum displacement *Z* is *unlimited*
- Gap g is independent of Z
- Decreasing *g* lowers the voltage, while *maintaining* the output force and displacement

Too Much Stress !

Residual Stress Induced Mirror Deformation

For larger deformations, there must be in-plane tension or compression due to geometry.

But what happens if the stress is very high?

Spontaneous Symmetry Breaking

If stress is high, deformation changes from spherical to *cylindrical*. A square plate becomes *bi-stable* !

A bi-stable actuator *does not require power* to maintain either state. States can be *switched* electrostatically, similar to the Party Favor device.

Acknowledgements

MEMS devices: design, process, testing, reliability

S. Arney, H. Bair, C. Bolle, B. Barber, D. Carr, H. B. Chan, C. Chang, A. Gasparyan, R. George, L. Gomez, S. Goyal, D. Greywall, M. Haueis, T. Kroupenkine, V. Lifton, D. Lopez, M. Paczkowski, F. Pardo, A. Ramirez, R. Ruel, H. Shea, M. E. Simon, J. Vuillemin, J. Walker

<u>Subsystem and System</u>: optics, packaging, physical design, electronics, software, training & test

N. Basavanhally, R. Boie, C. Doerr, J. Ford, R. Frahm, D. Fuchs, J. Gates, R. Giles, J. Kim, P. Kolodner, J.S. Kraus, B. Kumar, C. P. Lichtenwalner, D.F. Lieuwen, Y. Low, D. Marom, D.T. Neilson, C. Nijander, C. J. Nuzman, R. Pafcheck, A. R. Papazian, D. Ramsey, R. Ryf, R. Scotti, L. Stulz, H. Tang, A. Weiss, J. Weld

NJ Nanotechnology Consortium (and formerly Si Fabrication Research Lab): MEMS processing, process development

G. R. Bogart, E. Ferry, F. P. Klemens, J. F. Miner, R. Cirelli, S. Rogers, J. E. Bower, R. C. Keller, W. Mansfield, C-S.Pai, W. Lai, K. Teffeau, H. T. Soh, J. A. Taylor, A. Kornblit, T.C. Lee and J. Q. Liu

Leadership and support

S. Arney, J. Gates, R. Giles, D. Bishop

Lucent Technologies

MEMS Hinge technology

Out of plane mechanisms: Fold up structures

