Optical MEMS: Actuating Light

V.A. Aksyuk

Microsystems Research

Bell Laboratories, Lucent Technologies

Optical MEMS for Telecom:

- Quality optical elements
- Precision positioning actuators
- Moderate speed
- High reliability

- Large number of elements
- High integration density

Key design features:
compliant mechanisms electrostatics, stress engineering
Nonlinear Effects - Numerical Modeling

Electrostatic Actuation

- no heat dissipation
- localized fields (good conductors) -no crosstalk
- no special materials- wide range of fabrication processes

Excellent for densely integrating multiple actuatorsfor optical applications!

Challenge:

- effective designs withnonlinear electrostatic force
- achieving large amplitude with low voltage

Compliant Mechanisms

Pure flexure: no mechanical contact during operation

Flag switch / attenuator

Static contact under load: possible stiction, no wear

Scratch Drive

Gears

Sliding contact under load:
susceptible to friction, stiction and wear

Flag switch details.

Stress Engineering

Avoid or relieve: elastic elements

Use: nonlinear elastic elements
Create:

- use residual stress energy to power mechanical action, e.g. self-assembly
- use residual stress to achieve desired element shape

Electrostatic and Mechanical Nonlinearities

Avoid, better design (or an easy way out):

- strain-relieved mechanical elements
- comb drives

Use and control:

- majority of electrostatic actuators

Create:

- nonlinear spring elements
- bi-stable actuators

Effective analysis techniques are key Numerical tools are essential

Numerical Modeling

Electrostatics:

- weakly coupled problems, e.g. 2-axis mirror
- strongly coupled problems, e.g. Party Favor actuator

Mechanics:

- residual stress and buckling prediction and avoidance, strain-relieving suspension design
- cases involving mechanical contact

Analytical solutions for linear problems
Numerical analysis to check analytical calculations or tackle nonlinear problems

Key design features:

- compliant mechanisms
- electrostatics
- stress engineering

Nonlinear effects
Numerical modeling

- Beam-steering mirror:
- electromechanical modeling
- Mirror springs:
- residual stress effect
- numerical technique for buckling prediction
- Double Hinge Mirror:
- lever amplification, transmission mechanisms
- Self-assembly:
- creative use of residual stress
- Party Favor tilting mirror:
- residual stress engineering
- zip-lock actuation with mechanical contact
- Bi-stable vertical actuator:
- large-stress geometric plate nonlinearity

Beam-Steering Micromirror Design

Design parameters:

- Electrode size and shape
- Gap size
- Spring and gimbal geometry
- Mirror thickness

Device characteristics:

- Angular range
- Mirror size
- Mirror shape - flatness
- Integration density - fill factor - no crosstalk
- Spring stiffness - speed - vibration sensitivity
- Drive voltage, angle vs. V curve - control
- Stability and repeatability
- Reliability

Electrostatic Actuator, 1 degree of freedoom

C comb capacitance k spring constant x deflection

Parallel-Plate Electrostatic Actuation

$$
\begin{aligned}
& F_{\text {mech }}=F_{\text {electrostatic }} ; \\
& k_{\text {mech }}\left(d_{0}-d\right)=-\frac{1}{2} k_{\text {elec }} d
\end{aligned}
$$

$$
\text { Unstable if: } \quad k_{\text {total }}=k_{\text {mech }}+k_{\text {elec }} \leq 0
$$

Snap down:

$$
\begin{array}{ll}
V_{\text {pull-in }}=\sqrt{8 k_{\text {medh }} d_{3} / 27 \varepsilon} & { }_{0}^{A} \\
d=2 / d_{0} & \\
\hline
\end{array}
$$

Torsional Electrostatic Actuation

height
deflection angle electrode voltage plate width plate half-length torsion bar width torsion bar thickness torsion bar length mod. of elasticity
(two torsional hinges)

Analytical Disregard Fringe Effects

Capacitance, $\mathbf{C}(\alpha, \mathrm{L}, \mathrm{g})=\mathrm{L} \mathbf{F}(\mathrm{L} \tan (\alpha) / \mathrm{g}) / \mathrm{g}$
Torque, $\mathrm{l}=\mathrm{V} / 2 \mathrm{dC} / \mathrm{d} \alpha \sim(\mathrm{L} / \mathrm{g})^{2} \mathrm{dF} / \mathrm{d} \alpha$ snap-down angle, α_{sd} scales as g/L

As long as $g \ll L$, works for arbitrary electrode shape. Analytical solution can be obtained for more than 1 DOF. Does not work if edge effects are important, e.g.g~L.

Enhanced Range Electrode Layout

Increased angular range is obtained by using extra electrodes.

Numerical Techniques: Iterative Solver

Exact calculations of mechanically deforming conductors
~ 10 cycles per device position, very time consuming for multiple trajectories.

Do we really need coupled analysis?

3

- This mirror moves as a collection of rigid bodies attached by springs
- Springs do not contribute to electrostatic force

Θ_{x}

Θ

y

Mirror Moves As Solid Body

 Tilts are the important DOF
Mechanics:

$$
\vec{F}=\hat{K}|\vec{x}| \cdot \vec{x}
$$

Electrostatics: $\quad E=\frac{1}{2} V_{i} V_{j} C_{i j}(\vec{x})$
Force or torque: $\quad \vec{F}=\nabla E \mid \vec{x})$
Equilibrium:
$\hat{K}(\vec{x}) \cdot \vec{x}=\frac{V_{i} V_{j}}{2} \nabla C_{i j}(\vec{x})$
E.g. 1D tilt case:

No need to iterate:

- calculate τ once (Mechanical solver)
- calculate $C(\theta)$ for all θ once (Electrostatic solver)
- calculate $V(\theta)$ using the above equation

Works for two tilt angles and voltages as well.

$Z_{m}+Z_{g}$

$$
Z_{m}=Z_{g}
$$

More DOF - NO PROBLEM

Treat Z sag as perturbation

$$
\hat{K}(\vec{x}) \cdot \vec{x}=\frac{V_{i} V_{j}}{2} \nabla C_{i j}(\vec{x})
$$

1. Calculate $V_{0}(\theta, z=0)$ as before
2. Calculate $z_{l}\left(\theta, V_{0}\right)$ solving the same equation
3. Calculate new voltage $V_{l}\left(\theta, z_{l}(\theta)\right)$
4. Iterate 2,3

Linear Elastic Element Design

Sources of stress

- residual
- packaging
- thermal mismatch

Some elastic elements change their stiffness considerably with applied external stress.
Nonlinear behavior results.
Buckling instabilities in extreme cases.

Straight Rod Design - Mechanical Modes

How do mode frequencies depend on stress?

Resonance Frequency $\rightarrow 0$: Buckling

Strain-relieving Spring Is Linear

Buckled to V1

Beam Deformations

$$
\begin{gathered}
z(x)=-F \cdot \frac{x^{2}(3 L-x)}{6 E I} ; z(L)=-F \cdot \frac{L^{3}}{3 E I} \\
I=\frac{w t^{3}}{12}
\end{gathered}
$$

L length $\quad E$ Young's modulus
a width G shear modulus
b thickness

$$
\begin{gathered}
(x)=T \cdot \frac{x}{C G} ; \quad(L)=T \cdot \frac{L}{C G} \\
C=\frac{w t^{3}}{3} \text { for } t \ll w
\end{gathered}
$$

Nonlinear mechanics

(Landau, Lifshitz, "Theory of elasticity")

Double Hinge Tilting Mirror

- 10 degrees of continuous tilt
- 30×50 um mirrors
- moderate $\mathrm{V}<100 \mathrm{~V}$
- high speed, $\mathrm{f}>10 \mathrm{kHz}$
- high fill factor (close-packed)
- no electromechanical crosstalk
- surface-micromachined

\square Angle amplification enables a more efficient actuation regime

Micromechanical transmission mechanism

Angle Amplification

For an actuator consisting of plates, maximum output work is typically:

$$
W_{\max } \propto \frac{A}{g} V^{2}
$$

The transmission mechanism increases work produced by the
 actuator:

- larger area can be used
- actuator gap can be decreased, while maintaining the required range of motion

Transmission Mechanism Efficiency

$$
\begin{aligned}
& W_{\text {electrostatic }}=E_{\text {mech }}^{\text {required }}+E_{\text {mech }}^{\text {other }}=E_{\text {mech }}^{\text {torsional }}+E_{\text {mech }}^{Z} \\
& E_{\text {mech }}^{Z}=\frac{1}{2} K_{Z} z^{2}
\end{aligned}
$$

To maximize efficiency, need to increase stiffness to unwanted deformations: nonlinear -

- mechanical contact - friction
- straight torsion rod - stress sensitivity
linear -
- high aspect ratio spring
- submicron lithography

Stress Induced Mirror Deformation Issues

Residual stress in surface micromachining poly-Si is well-controlled Proper low-stress metallization materials are used

> Polysilicon = SOI (for curvature issues)

Correct choice of reflector Si thickness: curvature - thickness - mass - speed (f) - spring stiffness - voltage

Deviation from desired shape less than
$\lambda / 20$

"Stress-induced curvature engineering in surface-micromachined devices,"V. A. Aksyuk, F. Pardo, D. J. Bishop,SPIE Symposium on Design, Test, and Microfabriction of MEMS and MOEM, 30 March-1 April, 1999, Paris

Self-assembly During Release Makes Complex Structures Practical

V.A. Aksyuk et. al. Proc. SPIE v. 36801999

Self-assembly Force Calculation

$\mathrm{W}=100 \mathrm{um}$

$z(x)=\frac{x^{2}}{2 R}-\frac{F x^{2}(3 L-x)}{6 E I} ; h=z(L) \Rightarrow F=3 E I \frac{L^{2} / 2 R^{-h}}{L^{3}}$

Before release

After release

Free-standing shape

Self-assembly Using Residual Stress Is Robust and Reliable

- Holding force produced by mirror assembly arms exceeds 70 $\mu \mathrm{N}$, compared to:
- Maximum electrostatic force (Vmax on all four electrodes) $10 \mu \mathrm{~N}$
- 500 g mechanical shock $15 \mu \mathrm{~N}$
- 256-mirror array chips are released with all mirrors assembled and functional.
- Uniform and accurate - lithographically defined final position.
- Batch fabrication, wet process.
- No external probes, leads or power are required.
- Was adapted to a variety of devices.

Party Favor device - fully coupled problem

- Exact beam shape not known
- Electrostatics depends on beam shape

Have to use coupled analysis

- Plate does not deform
- Springs do not contribute to electrostatics

Not a fully coupled problem

"Party Favor" Actuators

- Stress-engineered shape
- Deforming actuator plate
- "Zip-lock" operation with mechanical contact
- No fine-lithography features required

Large deflections and forces can be
 achieved at moderate or low voltages.

Will be uncurling if: $\quad \Delta U_{\text {elastic }}<\Delta U_{\text {elec }}(V)$
To uncurl a length of the beam: $\Delta U_{\text {elasicic }}=\frac{E t^{3} w \Delta L}{24 R^{2}}$
"Near-field" estimate:

$$
\Delta U_{\text {elec }}=\frac{V^{2}}{2} \Delta C \approx \frac{V^{2}}{2} \Delta C_{\text {cosed }}=\frac{\varepsilon}{g}{ }_{0}^{\lambda w \Delta L} \frac{V^{2}}{2}
$$

Threshold voltage: $V^{2} \times \frac{1}{8} \frac{\mathbb{E}^{3}}{\sqrt[12 R^{2}]{2}}$

OUTPUT WORK: $\quad W_{\max } \propto \frac{L \lambda w}{g} V^{2}$

BUT:

- Maximum displacement Z is unlimited
- Gap g is independent of Z
- Decreasing g lowers the voltage, while maintaining the output force and displacement

Device Performance

Too Much Stress !

Residual Stress Induced Mirror Deformation

Curvature radius \mathbf{R}

For larger deformations, there must be in-plane tension or compression due to geometry.

But what happens if the stress is very high?

Spontaneous Symmetry Breaking

If stress is high, deformation changes from spherical to cylindrical. A square plate becomes bi-stable!

A bi-stable actuator does not require power to maintain either state. States can be switched electrostatically, similar to the Party Favor device.

Acknowledgements

MEMS devices: design, process, testing, reliability
S. Arney, H. Bair, C. Bolle, B. Barber, D. Carr, H. B. Chan, C. Chang, A. Gasparyan, R. George, L. Gomez, S. Goyal, D. Greywall, M. Haueis, T. Kroupenkine, V. Lifton, D. Lopez, M. Paczkowski, F. Pardo, A. Ramirez, R. Ruel, H. Shea, M. E. Simon, J. Vuillemin, J. Walker

Subsystem and System: optics, packaging, physical design, electronics, software, training \& test
N. Basavanhally, R. Boie, C. Doerr, J. Ford, R. Frahm, D. Fuchs, J. Gates, R. Giles, J. Kim, P. Kolodner, J.S. Kraus, B. Kumar, C. P. Lichtenwalner, D.F. Lieuwen, Y. Low, D. Marom, D.T. Neilson, C. Nijander, C. J. Nuzman, R. Pafcheck, A. R. Papazian, D. Ramsey, R. Ryf, R. Scotti, L. Stulz, H. Tang, A. Weiss, J. Weld

NJ Nanotechnology Consortium (and formerly Si Fabrication Research Lab): MEMS processing, process development
G. R. Bogart, E. Ferry, F. P. Klemens, J. F. Miner, R. Cirelli, S. Rogers, J. E. Bower, R. C. Keller, W. Mansfield, C-S.Pai, W. Lai, K. Teffeau, H. T. Soh, J. A. Taylor, A. Kornblit, T.C. Lee and J. Q. Liu

Leadership and support
S. Arney, J. Gates, R. Giles, D. Bishop

MEMS Hinge technology

Out of plane mechanisms: Fold up structures

