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Outline

• Introduction to Stevens and NJCMCS

• Definition of MCS

• Advantages of MCS

• Major application areas
– Miniaturization and Intensification

• Examples
– Extended: Fuel processing for portable power (CPM)

– Brief: Catalytic hydrogenation for pharaceuticals (CPI)
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Stevens Institute of Technology

• Private University 
founded in 1871

• The Stevens family:  First 
Urban Ferry Business in 
New York Harbor

• 1700 undergraduates, 
2800 graduates

• Engineering, Science, 
Technology Management

• Incoming Freshman GPA: 
3.8 and SAT 25%-75%: 
1200-1400
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New Jersey Center for 
MicroChemical Systems (NJCMCS)

• Official start in September 2002
– $7.5M commitments to date
– $10.0M pending for state-wide infrastructure

• Vision 
– Leadership for microchemical device/system understanding, 

design methodology and tools development

• Systems-level concept demo with our key partners
– Army-Picatinny, Bristol-Myers Squibb, FMC, and Lucent-Bell Labs 
– Portable power, pharmaceutical, and chemical applications
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NJCMCS People

• Besser Group
– Dr. L. Bednarova, S. Ouyang, K. Shah, H. Gadre, W. C. Shin, S. McGovern

• Lawal Group
– Dr. R. Halder, Dr. D. Qian, J. Adeosun, S. Tadepalli, Y. Voloshin

• Lee Group
– Dr. Y.-F. Su, J. Meyer, H. Chen, H. Qiu

• Affiliated Faculty
– Profs. R. Blanks, H. Du, T. Fischer, S. Koven, M. Libera, E. Whittaker

• Consultants
– Dr. A. Kaufman, Dr. J. Manganaro, F. Shinneman, M. Urken

• Center Administration
– Prof. Lee (Director) and Prof. Besser and Prof. Lawal (Co-directors)
– Aqsa Quresh and Pat Downes

Main contributors to the contents of this seminar.
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Microchemical Systems

Miniature reaction and other unit operations, possessing 
specific advantages over conventional chemical systems

Distinction from Lab-on-Chip: chemical production vs. analysis

(Simplified) 
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Microreactors—What Are They?

• “Microreactor” traditionally 
means lab bench reactor

• Dimensions 1/10 of those in 
bench reactors (Forschungszentrum Karlsruhe GmbH) 

(Ehrfeld, et.al., IMM) (Besser, et.al., IfM)
(Jensen, et.al., MIT)
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Benefits of Miniaturization—Why?

• Surface to Volume Ratio

– Low Transport Resistances

• Low Inventory (“Hold Up”)

• Robust Materials

• Cost
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Benefits: Surface to Volume

SA Increasing →

V Constant

Heat Management

Mixing

Surface Reaction

Explosion-Safety
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Benefits: Low Transport Resistances

1000-4000Plate

700-2500Spiral

150-1200Tubular

U (W/m2K)Hx Type

Example: Overall Heat Transfer Coefficient

Microchannel: 3800-6800 W/(m 2K)

(Stevens undergrad design project)

(500x500 µm2  x 1.5 cm channels)
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Benefits: Low-Inventory (Hold-Up)
AsH3

Schematic of As+ Ion Implanter Phosgene Reactor, Geismar, LA

Safety

Environment
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Benefits: Robust Materials

• High strength, high melting point 
materials:
– Metals

– Ceramics

– Silicon

• Array of fabrication processes (MEMS 
technology)

• Non-traditional reactor materials
– Polymers

SS 304

Al2O3

Si
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Benefits(?): Cost

• Reactor Fabrication
– High volume batch

• Si integrated circuit fabrication model

• Metal/ceramic micromachining techniques ($)

• Interface of reactor to plant ($?)

• Scale-Up Process
– Linear process

– Characterize unit module; scale up throughput 
by addition of modules
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Major Application Directions

– Same functionality per 
volume as macro

– Miniature size is 
distinguishing factor

– Portability often 
important

– Higher functionality 
density than macro

– Size reduction is not 
paramount

– May access new 
chemistry routes

– Generally leverages 
transport advantageExample: H2 generation for 

small fuel cells
Example: hydrogenation of pharma
intermediate.

Chemical Process 
Miniaturization

Chemical Process
Intensification
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Fuel Cells:
Applications & Power Ranges

 100     101          102          103             104          105         106               107

FUEL CELL

Power 
(Watts)

Ship Service 
Fuel Cell

Taken from 
Robert Nowak
DARPA
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Can We Use Microchemical 
Systems for Portable Power?

• MCS: Superior heat and mass transfer
– Thermal management, excellent mixing

• MCS: Compactness
– Energy density:

• Advanced Li-MnO2 battery: 169 W-h/kg

• MeOH: 6000 W-h/kg
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Vaporizer Reformer Water-Gas Shift CO Elimination 

Fuel Processor Fuel Cell 
Hydrocarbon 

Fuel 
Electrical 

Power 

H2-rich
stream

Model Study: Preferential Oxidation (“PrOx”)

CO poisons PEM fuel cell catalysts

CO must be reduced below 10 ppm for viability (PEMFC)

PrOx reactor
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CO Poisons FC Catalyst

Motivation

(M.Gotz and H. Wendt, Electrochemica Acta, 43, 3847 (1998)).
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Goals for PrOx Project

• Construct strong support infrastructure for 
MCS understanding and design

• Apply this infrastructure to understanding 
PrOx for portable fuel cells

• Demonstrate a PrOx reactor for a 1-We 
fuel processing system 
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PrOx Design Challenges

Design Criteria
• 150-200°C and ~1 atm
• Minimum volume, ΔP
• Conversion, selectivity, stability.

Air @ 2 µmole/s

Reformate @ 20 µmole/s
CO:   1.7%
H2:    68.5%
H2O:  8.1% 
CO2:  21.7%
CH3OH: 27 ppm

Treated Reformate
CO: 9 ppm
Low H2 conversion

To PEMFC

Surface
Engineering

Microfabrication Kinetic
Simulation

Fluidic
Modeling

CO 1

2
O2CO2
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Approach

Microreactor Design/Fab. 
for Microkinetic Studies 

(Shin)

Microarray Instrumentation
for Parallel Evaluation 

(Ouyang)

Thin-Film Catalyst Synthesis
w/ Nanoscale Control 

(Chen)

Mechanism 
Development
(Bednarova)

Kinetic Model 
w/ CHEMKIN

(Ho)

Transport Model
w/ Fluent

(Qian)

Experiment Simulation

Synthesis

Comprehensive 
Reactor
Design
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Microreactor Fabrication

• Photo-patterning 
process

• High-rate silicon dry 
etching (DRIE)

• Anodic bonded Pyrex 
cover

• Batch processing

• 8-in. Si wafers, Bell 
Labs-NJNC
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Thin-Film Wall Catalyst: Why?

• Low pressure drop 
compared to packed 
bed

• Less clogging

• Better mass transport 
than packed bed or 
washcoat

200 µm

50 µm
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Catalyst Infiltration

I II

I-1

I-2

I-3

II-1

II-2

II-3

Pyrex®

Si

50 µm

5µm

5µm

Closed Channel InfiltratedOpen Channel Closed Channel
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Microreactors Fabricated for 
PrOx Research Project

 

8-in. Si wafer, Bell Labs

Long-channel reactor

Short-channel reactor

Short-channel reactor under test
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Gathering Process-Relevant 
Information—How?

Microkinetic array

Four reactors in parallel

Independent reaction 
parameters

Shared analytical

Test reactor found to 
mitigate CO in 0.25 We 

flow with ≈1mg catalyst

Individual 
microreactors

Independent 
reaction control

No cross-
contamination

Fast sample 
loading and 
unloading

Process 
relevant 

reaction info
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CHEMKIN Simulation:
Prediction of Reaction Behavior

1.  H2+Pt(s)+Pt(s) → H(s)+H(s)

2.  O2+Pt(s)+Pt(s) → O(s)+O(s)

3.  H2O+Pt(s) → H2O(s)

4.  CO2+Pt(s) → CO2(s)

5.  CO+Pt(s) → CO(s)

6.  CO(s) → CO+Pt(s)

7.  CO2(s) → CO2+Pt(s) 

8.  C(s)+O(s) → CO(s)+Pt(s) 

9.  CO(s)+Pt(s) → C(s)+O(s)

10. CO(s)+O(s) → CO2(s)+Pt(s)

11. CO2(s)+Pt(s) → CO(s)+O(s)

12. CO(s)+OH(s) → CO2(s)+H(s)

13. CO2(s)+H(s) → CO(s)+OH(s)

14. H(s)+O(s) → OH(s)+Pt(s)  

15. OH(s)+Pt(s) → H(s)+O(s)

16. H2O(s)+Pt(s) → H(s)+OH(s)

17. OH(s)+OH(s) → H2O(s)+O(s)

18. H2O(s)+O(s) → OH(s)+OH(s)

19. H+Pt(s) → H(s)

20. H(s) → H+Pt(s)

21. O+Pt(s) → O(s)

22. O(s) → O+Pt(s)

23. OH+Pt(s) → OH(s) 

24. OH(s) → OH+Pt(s) 

25. H(s)+H(s) → Pt(s)+Pt(s)+H2

26. O(s)+O(s) → Pt(s)+Pt(s)+O2         
            

27. H2O(s) → H2O+Pt(s)

28. H(s)+OH(s) → H2O(s)+Pt(s)

• Solution of kinetic 
rate eqns. all species

• Eight gas/surface 
species along 
channel

• Virtual experiments

• New experiment 
directions generated
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How Does the Reactor Perform?

• What is the conversion behavior?

• What is the selectivity?

• How productive is the reactor?

• What are the transport limitations?

• What is the activation/deactivation 
behavior?

• What is the catalyst stability?
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Conversion Behavior
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Comparison: Experiment vs. 
Simulation
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Catalyst Activity Comparison

TOF=molecules produced/active site/sec 

≈same activity as others at lower 
temperature (<150°C)

better activity at higher 
temperature (>200°C)
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Mass Transport Limitation
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Conversion Comparison
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2-D Finite Difference Model

CO1
2
O2HΔ =−67kcal /molCO2

H 2
1
2
O2HΔ =−58 kcal /mol H 2O

CO2H 2HΔ =9 .8 kcal /molCOH 2O

r

L

Twall = Constant
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Temperature Non-Uniformity:
Hot Spots

2 mm radius
WHSV: 1500 hr-1 
-
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Predicted Conversion 
Characteristics
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Flow Distribution Optimization

2-D design for equal
flow distribution in channels

(Computational 
Fluid Dynamics 
Model)
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Fabricated 1We PrOx Reactor

4 Reactors on 4-in. Wafer
Actual Chip;29 x (450 x 400 µm2) Channels

3.1 cm

2.5 cm



PASI 2004

Next Step: Component 
Integration from a System Perspective

RSTOIC
RSTOIC

SEP2

MIXER

RGIBBS RGIBBS

SR PROX PEMFC COMBUSTOR

MIXER

SEPARATOR

SR 260 °C

Q= 6.0 W

PROX 155 °C

Q= -2.4 W

COMBUSTOR

 350 °C

Q= -23.4 W
VAPORIZER

260 °C

Q= 10.1 W

HE1

Q= -1.4 W

HE2

Q= -0.78 W

HE3

Q= -0.28 W

HE4

Q= -3.7 W

Example:  Energy 
management with 
ASPEN simulations 
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Adapted from S. Kiang, 
Bristol-Myers Squibb, 2003

Today

Toxicology/
Preclinical

 Lead 
Optimization

Secondary 
Screening

Clinical 
Testing

Assay
Development 
& Primary 
Screening

Compound 
Generation

Target
ID

FutureFuture

Bringing New Drugs 
Faster and More Safely to the Marketplace

1µg 1mg 1kg 10kg
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Intensification for Pharma:
Catalytic Hydrogenation

NO

OCH 3

CATALY ST
2

3H
2

3

2
NH

2
2H  O

OCH

20% of all pharma manufacturing 
processes

•Currently: batch reactors, >100 l in size

•H2 at high pressure (safety)

•Highly exothermic-low duty cycle, high 
heat removal (cost, energy efficiency)

•Residence time several hours

•Selectivity 50%; several  purifications 
needed

 

Continuous flow microreactors

Low H2 hold-up

Superb heat extraction, high-duty cycle, 
low peak cooling;

Residence time minutes

High selectivity through T control

o-nitroanisole o-nitroanisidine
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Intensification for Pharma:
Catalytic Hydrogenation

Challenges:

Transport Effects in Multiphase flow

Effective Reactants Mixing 

Minimization of Pressure Drop

Minimization of Heat and Mass Transfer Resistances 

Catalyst Selection/Preparation/Deposition for High 
Yield and Selectivity 

Intrinsic Kinetics Analysis for Microreactor Design

Microreactor Design & Optimization
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Conclusions

• MCS/Microreactors possess special properties due to 
their small dimensions (< 500 µm), large surface-to-
volume ratio, and materials options.

• MCS will be used to enable the generation of hydrogen for 
small fuel cell systems (miniaturization).

• MCS will allow access to novel chemical environments for 
the production of special chemical products like 
pharmaceuticals (intensification).
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