

Implantable MEMS Drug Delivery Devices

Michael Cima, Robert Langer, Amy Richards, Rebecca Scheidt Shawgo, Audrey Johnson, Yawen Li, Grace Kim, Hong Linh Ho Duc, Karen Daniels, Malinda Tupper **Massachusetts Institute of Technology** Henry Brem, Betty Tyler, Paul Wang **Johns Hopkins University** James Anderson, Gabriela Voskerician **Case Western Reserve University** John Santini, Norm Sheppard, Christina Freakes, Scott Uhland, Jack Herman **Microchips, Inc.**

Vision: Implants for chemical signaling

- The endocrine system functions via potent chemical regulatory molecules: Hormones, steroids, etc.
- MEMS devices may repair or manipulate endocrine function by converting sensor(s) input(s) to logic, and finally to the release of chemical regulatory agents
- Analogy to sensor activated neuronal stimulation
- Applications: BNP for CHF, PTH

In vivo Dye Release

- 1 µg sodium fluorescein dye per reservoir
- Devices implanted subcutaneously in rat flank 48 hours prior to activation
- Animal flank was sectioned, and the fluorescein content of each section analyzed by spectrophotometry
- Explanted devices observed visually for corrosion of membrane and residual dye within the reservoirs
- Controls were animals without a device, with an unactivated device, with injected dye, and the opposite flank of each animal

Feed-back control of potent vasodilators?

- B-type natriuretic peptide (BNP), is a treatment for acutely decompensated congestive heart failure (ADCHF) that rapidly decreases pulmonary congestion
- Recently approved by the FDA, Nesiritide (synthetic form) has been shown to lead to a reduction in pulmonary capillary wedge pressure (PCWP), the measure of pulmonary congestion resulting from ADCHF
- Administered now as an IV infusion
- An additional protocol is forthcoming to evaluate subcutaneous administration of Nesiritide.
- Studies are contemplated to use an implantable hemodynamic monitor to control infusion pump delivered BNP. Delivery would be based on the measured severity of pulmonary congestion
- All implantable systems is possible

PLGA4.4, PLGA11, PLGA28, and PLGA64 polymers

Release Times Correlated With Degradation Study

Observed release times for devices at 25 °C *in vitro*, having 150-175 μ m membranes and loaded with ¹⁴C-dextran, compared to measured molecular weight for 150 μ m thick film samples degraded at 25 °C with media change.

Observed release times for devices at 37 °C *in vitro*, having 150-175 μ m membranes and loaded with ¹⁴C-mannitol, compared to measured molecular weight for 150 μ m thick film samples degraded at 37 °C with media change.

			05 160
Membrane	Time to Release	Measured M _w	
Polymer	(days)	of film samples	
PLGA4.4	<1	4400 @ 0 da	iys
PLGA11	25-32	~4400 @ 28 d	lays
PLGA28	58-92	15770 @ 49 d	lays
PLGA64	66-121	8035 @ 49 da	ays

Membrane Swelling During Release Studies

PLGA4.4 membrane swelling on device loaded with ¹⁴C-dextran (M_w 10,000)

Day zero

Day two

SEM after 30 days

PLGA11 membrane swelling on device loaded with ¹⁴C-dextran (M_w 10,000)

Release Times in Days for Different Molecules

	Membrane Polymer			
Molecule	PLGA4.4	PLGA11	PLGA28	PLGA64
¹²⁵ I-HGH (M _w 21,500)	1	6-10	17-24	20-30
¹⁴ C-dextran (M _w 70,000)	1	13-17	27-38	30-51
³ H-heparin (M _w 6,000-20,000)	1	16-18	33-45	40-47

