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Microphones
• More than 2 billion produced annually and growing.

650 million just for cell phones
• Most microphones are based on inexpensive 

commodity  electret-condenser design 
• Desire for better performance in mobile speech 

communications and speech recognition is driving 
demand for new microphone solutions

• Multiple microphones as well as other sensors 
combined with associated signal processing  is 
gaining interest
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May 31 2004 EE Times “Prediction”

Marlene Bourne  InStat/MDR
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Condenser (electret) Microphone

25 microns
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Condenser Microphone
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Condenser Microphone
• Can be modeled as a simple single DOF spring-mass system
• Stiffness control region (flat response below resonance)
• Responds to the scalar acoustic pressure (same as ear)
• Linear over human hearing dynamic range
• Requires a polarization bias charge (internal or external)
• Electret-Condenser most  produced microphone 
• Low mass diaphragm results in less vibration sensitivity
• Self-noise typically less than 30 dBA
• Simple construction and can be very low cost  <$0.10 
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Frequency Response
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Why MEMS microphones ?

• Small in size and weight 
– Good for hearing aids and cell phones
– minimizes disturbance to the sound field 
– low mass diaphragm results in low vibration 

sensitivity
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Why MEMS microphones ? (cont)
• Same manufacturing process as IC Fab

– low cost (price drops as fab cost drops)
– standard IC pick-and-place packaging
– leverage advances in IC fabrication
– inexpensive and rapid device modification
– finer specification tolerance / reproducibility

• Direct integration with A/D and DSP
• Ease of combination with multiple sensors 
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Current drivers for MEMS microphones
• Hearing aids 

– smaller size and weight
– multiple microphones on a single chip (directionality)
– cost, reliability, and potential for simplified assembly

• Cellular phones, PC’s, and PDA’s
– integration with automatic manufacturing processes
– integration of microphone with A/D and DSP
– improved acoustic performance for speech and ASR
– cost, reliability, specification tolerance, and 

reproducibility
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MEMS Microphone processing techniques

• Bulk micromachining 
– selective removal of wafer substrate
– compatible with current IC processes
– currently limited to pressure sensing only

• Surface micromachining
– deposition and removal of thin structural layers
– enables devices that are 3D (out-of-plane)
– flexibility to build more complex array structures
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Knowles SiSonic
surface and bulk micromachining

source: Knowles

diaphragm: 0.5mm x 1µm gap: 4 µm 
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Akustica – Bulk Machining

source:Akustica1 mm2 , teflon diaphragms
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0.5 micron gap

Bell Labs “Tent” all-surface machined microphone
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(manually assembled)

First all surface micromachined microphone: Assembly and working principle
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Current issues with MEMS microphones 
• Signal-to-noise ratio  is usually too low (>35 dBA)
• MEMs processes not always compatible with 

standard CMOS fabrication (requires two chips)
• Environmental robustness and stability
• Higher unit cost versus commodity electret
• Aside from pick-and-place and potential higher 

temperature operation; no added functionality and 
reduced noise performance over standard electret
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Where does the noise come from? 

From Nyquist’s relation, noise equivalent acoustic pressure is:

where the acoustic resistance, RAS

RAS =
RM
S2

pn = 4kBTRAS [N/
√
Hz]
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Low frequency equivalent circuit
(impedance analogy)

acoustic domain electrical domain

back cavity backplate
resistance

preamplifier
impedance

membrane
compliance

static
compliance

coupling coefficient



PASI 2004

Diaphragm / Back-Volume Compliance
The membrane mechanical compliance is:

CM =
S2

8πT
The back cavity mechanical compliance is:

CM2 =
CA2
S2

=
V

ρoc2S2

,  T = membrane tension

Typical design goal: CM2 >>CM
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Acoustic resistance of viscous squeeze-
film flow between parallel circular plates    
For parallel  disks of area S,

gap spacing is d and the fluid viscosity is µ

RAS =
3µ

2πd3
[N · s/m]
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Acoustic resistance of viscous  squeeze-
film damping with one perforated disk       

For parallel  perforated disks of area S,

N is the number of holes, A is fraction of open area

G(A) =

"
A

2
− A

2

8
− lnA
4
− 3
8

#
RAS ≈

12µG(A)

Nπd3
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G(A) function
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Acoustic resistance due to viscous    
fluid flow in the microphone gap          
For parallel and perforated backplates

where d is the microphone gap

SNR ∝ d

p2n ∝ RAS ∝ d−3
p2s ∝ 1/d2
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Radiation Resistance
The real part of the radiation impedance is 

another noise source (ka < 1).

RAR ≈ ρS(ka)2/4
where k is the wavenumber (ω/c), ρ and c are the

For small ka < 1 this term is much less
than the viscous fluid damping term RAS

density and sound speed.
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Ways to reduce MEMS noise

• Increase the bias voltage

Coupling coefficient φ =
SCMVo

d
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Ways to reduce MEMS noise (cont)

• Increase membrane compliance
• Increase the spacing (reduce viscous effects)
• Increase the microphone active capacitance
• Reduce stray capacitance 
• Increase the size 
• Use multiple microphone elements

Coupling coefficient φ =
SCMVo

d
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(manually assembled)

MEMS microphone array

SNR gain: 10log(N)



PASI 2004

Directional Microphones

Hearing aids, hands-free cell phones, 
PC’s and PDA’s now require 
directionality to improve speech 
SNR in noise and reverberation
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SPL vs. distance
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Can we build directional MEMS?

Linear Delay-Sum Beamformer?

For a uniform linear array of N microphones, 
with spacing ds, the 3 dB beamwidth is:

2∆θ ≈ 48◦ λ

Nds
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For a 10 mm array:
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differential microphone (first-order)

Y (ω, θ) ≈ ωS(ω)[dcos(θ)/c+ T ]

kd << 1, ωT << 1for small spacing ,
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Various first-order patterns
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pressure velocity
E(θ) = α+ (1− α) cos(θ)
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1 mm-spaced first-order pressure 
difference response

10
2

10
3

10
4

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (Hz)

N
or

m
al

iz
ed

 re
sp

on
se

 (d
B

)



PASI 2004

Differential directional microphone 
principle in nature (Ormia Fly)
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SUNY Binghamton (Miles)

1x2 mm diaphragm, 1µm thick 
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MEMS Microphone Summary
• Offers circuit integration and lower assembly cost
• Manufacturing precision     tighter specifications
• Thermal noise from a small gap a serious problem
• “Usable” microphones will have to be of mm size
• Back cavity required: 3D structures (self assembly) 

or bonding to another structure required
• Combinations of multiple pressure and/or different 

types of sensors and digital signal processing is a 
promising area for R&D


