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MEMS Activities in Canada
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MEMS Activities at McMaster

• Radiation pressure experiments (1)
• Ultra-low-force Sensor development (1)
• MEMS integrated optics (2)
• III-V MEMS devices and systems (1)
• Adaptive Optics (1)
• Laser micromachining for new materials (2) 
• “nanopower” for ubiquitous sensing (1)
• Communication to ubiquitous sensors (2)
• Novel microfluidic applications  (2)
• Biomedical applications (3)
 CEMD – Research Fabrication facility
 BIMR – Materials and Characterization
 HHS – Medical School and research on campus
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Motivation

• Connection to optical tweezer experiments
• Understand role of radiation pressure in Optical 
MEMS devices
• Study physics of Casimir effect using real photons 

instead of virtual ones – allows the effects to 
be controlled and studied, including 

spectroscopically
• Study and utilize plasmon effects to generate 
enhanced forces on MEMS devices
• Framework for implementing optical computing
• Framework for studying macroscopic quantum 
entanglement 



Radiation Pressure Experiments

A brief history of radiation pressure experiments:
• 1864 - Maxwell, pressure on reflection = 2I/c
• 1873 - Sir William Crookes - “Crookes’s 
Radiometer”, turns the wrong way for radiation 
pressure (Maxwell refereed the paper)
• dark side hotter than shiny side → more 
pressure, Maxwell showed this is incorrect, just 
heat flow
• 1879 - Reynolds - submitted paper on “thermal 
transpiration”, flow of gas through porous plates 
with ∆T, Maxwell refereed it, liked the ideas but 
not the math
• 1879 - Maxwell submitted “On stresses in 
rarified gases arising from inequalities in 
temperature”, crediting Reynolds, and then died
• 1881 - Reynolds paper was published
• 1901 - P. Lebedev, and E. Nichols & G. Hull, 
measure radiation pressure in better vacuums 
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“Light mill”, “solar radiometer”



Laser Trapping/Laser Tweezers

Ashkin, et al, at Bell Labs
• 1970: 2-d trapping of latex spheres in water
• 1970: 3d trapping in counter-propagating beams
• 1986: single beam 3-d trapping of atoms...
• 1987-9: application to Biology begins...

3 perspectives on trapping:
• force: refraction/ray tracing 
• energy
• E field gradients



All Optical Devices?

• Switching one light beam with another light beam
• Optical computing (perhaps for network)
• Rough comparison to other non-linear media:

n = n0 + n´2|E|2  n´2 ~ 1.5χ(3)/ε0n0

∆n/n0 = (n´2 /n0)|E|2

	 n´2/n0 ~  3.7 × 10−23 m2/V2, for SiO2

	 n´2/n0 ~  3.6 × 10−22 m2/V2, for CS2

∆θ = PradA/kl = (ε/Y)|E|2  optimally 

ε/Y  ~  1.3 × 10−22 m2/V2, for Si/polystyrene
• If enhance the effect and make devices smaller/faster 
gets interesting



Radiation Pressure vs. Thermal effects

Why not just use thermal effects? 
How to separate the effects?

Big parasitic effect that raises a multitude of 
strategies/design issues
• reduce exposure of metals/semiconductors/absorbing 
materials
• pull heat away (by increasing coupling to outside)
• design to minimize thermal gradients
• choose wavelength/ materials correctly 
• design to go with it (reduce coupling to mode of interest)
• work at frequencies above (thermal time constant)-1



Reduce coupling to torsional mode?

Present design Improved design?



Measurement System Outline

• MEMS device is actuator (and sensor)
• Glue dielectric sphere to MEMS device 

– to mimic laser tweezer experiments 
(functionally equivalent to a 1-d trap)
– to minimize heating effects

• Optical design/layout
• HV chamber and vibration isolation
• Low-noise circuitry



MEMS Force Sensor

poly-Si plate: 
500 µm x 500 µm x 3.5 µm

Torsional rod 
cross section: 1.5 x 2 µm2 

c = 2.1 × 10-8 N-m f0 ~ 3500 Hz

I = 7.1 × 10-17 kg m2 Q ~ 25000

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and Federico Capasso, Science, 291, 1941 (2001).



Experimental Layout - Force sensor

C1 ~ 0.55pF C2 ~ 0.55pF

Torsional Paddle
500µm  X 500µm

Torsion Rod ~ 3N/m

Laser beam
r ~ 42 µm

Polystyrene Sphere
r = 50 µm

2 µm

f0 ~ 3500 Hz
Q ~ 25000

Note: Use dielectric sphere intentionally:
• to quantify laser tweezer experiments
• to minimize heating effects



Experimental Layout - Optics

+ HV system 
(~10-9 Torr)
on vibration 
isolation table
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Circuitry for dc Detection

Capacitive  detection of torsional motion

For small θ,

Vsignal ∝ ∆C
	∝ θ
	∝ ∆F

--

+

f ~ 100 kHz
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dc Capacitance Shift



Noise in Low Force ac Measurements

• Thermal noise of detector from en of input 
transistor; flat vs. frequency 

• Thermal noise of oscillator peaked at resonance:

fn ~ (4kBTkQ/ω0)1/2

• But signal increases by Q at resonance

fn´~ (4kBTk/Qω0)1/2

• ∴ Signal to noise generally improves at resonance

• Want low k, high ω0, high Q: 

ideal direction for MEMS



Circuitry for ac Detection

Can drive the oscillator electrically or optically and use
    demodulation circuitry to measure ac components with ~ 10 kHz BW

--

+

f ~ 100 kHz
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Frequency Dependence



Circuitry for Resonant Detection

Modulate force at resonant frequency of torsional oscillator

--

+

f ~ 100 kHz
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Resonant Amplitude



Potential Energy



Radial Force



x-component of Force



Resonant Amplitude



Polarization Dependence and 
Anisotropy Effects

Total force, F, on a piece 
of polarized dielectric:

For a linear and isotropic 
dielectric:

P = ε0χE

(P•∇)E = ½ε0χ∇(E2)

If P ≠ ε0χE, then force is not radially symmetric
Related to torques observed on asymmetric objects

F =∫  P⋅∇ E dV



Quantitative Results

• Thermal time constant ~ 35 ms 
conduction through rods + some radiative coupling

• 4 methods for calibrating optical force: detection
      electronics, electrical drive, thermal noise of oscillator
      (equivalent to method used for tweezers), detector noise
• Displacement noise: xn = 2.0 pm/Hz1/2 off resonance

• Force noise: fn = 6.0 pN/Hz1/2 off resonance

• Equivalent noise: fn´ = 0.017 pN/Hz1/2 on resonance
• Displacement ~ 4.4 pm at dc, 110 nm at resonance, 3 mW
• Force experimentally observed:

 F = 0.26 pN/mW ± many systematic checks
• Force theoretically expected:

 F ~ 0.06/c = 0.20 pN/mW ± detailed calculations
• Anisotropy (~3:1), some idea why, interesting in itself



Conclusions

Convincing evidence of radiation pressure on a dielectric 
sphere:

• numbers are reasonable
• separation of thermal effects from radiation pressure 

by examining the frequency dependence
• spatial variation is reasonable

See anisotropy/polarization effects in present device
Better S/N by working at resonance (~ 0.017 pN/Hz1/2)
Significant actuation of the MEMS device (110 nm)
With enhancements and optimization  potential for 
interesting all-optical devices


