

The Laboratory for Physical Sciences

Quantum Limit of NEMS II Beyond Linear Detection, Coupling to Qubits

Keith Schwab, Laboratory for Physical Sciences National Security Agency

> June 2004 schwab@lps.umd.edu

This work is supported entirely by NSA

Recent Devices-RF SET coupled to Nanomechanics

 $T_N \sim 15 mK$

Active Cooling to the Ground State

The Leberatory for Physical Sciences

Feedback including QM

J. Garbini, et al, JAP 1996.

"Feedback Cooling of a Nanomechanical Resonator" Jacobs, Hopkins, Habib, and Schwab, PRB 68, 235328 (2004).

Feedback Cooling-Recent Experiments

The Leberelory for Physical Sciences

Cooling in Phase Space

What can we do with QL continuous position measurement?

rf SSET coupled to a 20 MHz resonator

- search for higher order modes
- achieve freeze-out, deviation from classical equipartition

\underline{N}	f	$\underline{\lambda}$
1	20 MHz	8 µm
3	110 MHz	3.4 µm
5	270 MHz	2.1 μm
7	500 MHz	1.6 µm
9	800 MHz	1.3 µm

• <u>rf SSET coupled to a 1 MHz resonator</u>

- increase coupling by reducing gap, observe back action fluctuations (Armour and Blencowe, Martin and Mozyrsky)
- drive dc current through resonator
 observe mech. noise from impact of electrons
 (Shytov, et al. PRL 2002) T_N~100mK 1K
- explore feed-back cooling(Hopkins, et al. PRL 2004)
 - should be able to cool below $T_N < 1 \text{ mK}$
 - expected to be a route to squeezing

Quantum Electro-Mechanics

The Estavelory for Physical Sciences

Quantum Electronics

- •Single Electron Transistors
- •Cooper-Pair Box
- •Quantum Dots
- •Quantum Point Contacts
- •SQUID's

.

•Single electron spins

Nanomechanics

 $k_{B}T \sim hv$ just a few quanta

 $\tau_{\rm D}{>}$ 1/v long coherence times

Exploit the quantum electronics to both detect and generate the quantum nature of the mechanical device.

QEM

Dynamics follow simple Schrodinger Evolution

Incoherent Single Electronics

SET's

Nanomechanics

Coherent Single Electronics

Cooper Pair Box

Quantum Limited position sensitivity: linear detection

Quantum Back-Action

Squeezing

Tunneling Spectroscopy to reveal energy levels

Quant. Limited Feedback

Coherent Dynamics

Quantum Superpositions Non-Demolition Measurements Understanding of Decoherence Possible Test of Quantum Mechanics

 $\rangle_1 \otimes |\uparrow\rangle_2$

Quantum phenomena of the:

Wave-like nature becomes apparent in reduced geometries $G_{ih} = \frac{\prod_{k=1}^{n} \frac{2k_B^2 T}{2k}}{2k}$ First kind: **Uncertainty Principle-Limited Detection** $\Delta x \cdot \Delta p \ge \frac{\hbar}{2}$ Second kind: **Energy Level Quantization** $\left|n+\frac{1}{2}\right|$ E=ħω Superpositions and Coherent Evolution $|t\rangle = \frac{1}{\sqrt{2}} |\uparrow\rangle + e^{i\frac{\Delta E}{\hbar}t} |\downarrow\rangle$ Ψ Controlled Entanglement with other quantum systems $\rangle_1 \otimes |\downarrow\rangle_2 + |\beta\rangle_1$

Some quantum mechanics of simple harmonic oscillators....

Quantum States of an Oscillator

more QM of oscillators...

Raising and Lowering operators:

$$\hat{a}^{\dagger}|N\rangle = \sqrt{N+1}|N+1\rangle$$
 Creation of a quanta
 $\hat{a}|N\rangle = \sqrt{N}|N-1\rangle$ Destruction of a quanta

on of a quanta

 $|t\rangle = a_0 e^{i\omega t/2} |0\rangle + a_1 e^{i3\omega t/2} |1\rangle + a_2 e^{i5\omega t/2} |2\rangle + \dots$ Superposition States: Ψ

Ų

$$|t|\rangle = \sum_{N=0}^{+\infty} a_N e^{i(N+1/2)\omega}$$

Coherent States

Coherent States – "classical" quantum states

superposition of number states

wave-packet oscillating in harmonic potential with frequency $\boldsymbol{\omega}$

minimum uncertainty wave packet

$$\Delta x \cdot \Delta p \ge \frac{\hbar}{2}$$

)'|N

Recipe to make a NEMS device be in two places simultaneously.....

superposition states, entanglements.....

Schrodinger's Cat Situation: Macroscopic state depends on microscopic quantum state Schrodinger's Whisker

Armour, Blencowe, and Schwab, Phys. Rev. Lett. 88, 148301 (2002).

Coherence times of the mechanics

Zurek, Habib, Paz, PRL 70, 1187 (1993).

A little about Qubits.....

Energy Spectrum of Cooper-Pair Box

Vion, et al, Nature 2002.

 $|0\rangle$

Spectroscopy of Box

2.0

Calculated Dynamics

Penrose Proposal

VOLUME 91, NUMBER 13

PHYSICAL REVIEW LETTERS

week ending 26 SEPTEMBER 2003

Towards Quantum Superpositions of a Mirror

William Marshall, 1.2 Christoph Simon, 1 Roger Penrose, 3.4 and Dik Bonwmeester 1.2

Low photon pressure requires very soft cantilever (even after amplify dwell time with cavity)

Very soft cantilever has very low frequency ~ 1KHz

Low frequency cantilever has very low freezeout temperature

~ 60µK

Cavity Quantum Electro-Dynamics

The Leberelocy for Physical Sciences

$$H_{total} = H_{atom} + H_{field} + H_{I}$$

$$H_{dm} = \sum_{j} E_{j} |j\rangle \langle j| \approx \hbar \emptyset$$

$$0$$

$$I$$

$$H_{jeld} = \sum_{n} \hbar V$$

$$u^{n} |a^{+}a + 1/2| \approx \hbar \emptyset$$

resonator

Two state system

Interaction with exchange of quanta

-0

 $\left|a_{1}+a_{1}^{\dagger}\right|$

Quantum Electro-Mechanics

 $H_{total} = \overline{H_{Box} + H_{resonator} + H_{I}}$ $H_{box} = \sum_{j} E_{j} |j\rangle \langle j|$ $(4E_{c} \delta_{n_{g}} \sigma) \qquad \sum_{l} + \frac{E_{j}}{2} \sigma \qquad x$ $H_{resonator} = \sum_{n} \hbar \omega \qquad (a_{n}^{+}a_{n} + 1/2)$

Interaction is through capacitance: $H_{I} = \hat{x} \cdot \vec{F} = \sqrt{\frac{\hbar}{2 m \omega_{a}}} (a^{+} + a) \frac{\partial}{\partial x} \left(\frac{1}{2} C V^{2}\right)$

$$= \hat{x} \cdot F = \sqrt{\frac{2m\omega_o}{2m\omega_o}} \frac{(a^+ + a)\frac{\sigma}{\partial x}}{(a^+ + a)\sigma} \left(\frac{1}{2}CV^2\right) n$$

Ζ

Armour, Blencowe, Schwab, PRL**88**, 148301 (2001). Armour, Blencowe, Schwab, Physica B**316**, (2002). Irish and Schwab, PRB**68**, 15531 (2003).

Energy Scales and Linewidths

Mechanical Dressed States

Ignoring H₁ we find the unperturbed energy:

 $(H_B + H_R)|\pm, N\rangle = E_{\pm,N}^{(0)}|\pm, N\rangle = |\pm E_B|\eta$

 $+N\hbar\omega$

 $|\pm,N\rangle$

Hamiltonian:

$$H_{System} = H_{CPB} + H_{Re\ sonator} + H_{System}$$

Second Order Shift of Energy Levels

The Leberatory for Physical Sciences

"Quantum Measurement with a coupled Nanomechanical Resonator—Cooper Pair Box System," E. Irish and K. Schwab, Phys. Rev. B 68, 155311 (2003)

Shift of the CPB by Resonator Fock States

The Leberatory for Physical Sciences

"Mechanical Lamb-shift analogue for the Cooper-pair box," A.D. By driving transitions in the Box, one should be able to:

Armour, M.P. Blencowe, and K.C. Schwab,

prepare a mechanical number state

perform QND measurement of number using Ramsey interferometry (Vion, 2002)

Shift of the Resonator frequency by the CPB

The Leberelory for Physical Sciences

 ω_m =300MHz, λ =0.1h ω_m , E_J =4 μ V, E_C =100 μ V

By measuring the mechanical frequency we can know the state of the phase states of the box.

Mechanical Cooling Through "Laser Cooling" of Qubit?

"Ground State Cooling of mechanical resonators," Martin, Shnirman, Tian, and P. Zoller Phys. Rev. B 69, 125339 (2004) Decay of charge state without change in mechanical state:

$$+, N-1 \rangle \rightarrow |-, N-1 \rangle$$

Nanomechanical Quantum Bus

What is the Q of these high

What is the effect of the oth Possible source of decohere

Advanced materials: Piezo nanotubes?

Quantum information processing and entanglement with Josephson charge qubits coupled through nanomechanical resonator

XuBo Zou L W. Mathis

Electromagnetic Theory Gross et THT, Department of Electrical Expressions, Conversely of Hanney, Gerweite Received 8 January 2001; readived in second form 3 February 2001; accepted 5 February 2001

Communicated in R. Wu

Reality Check: A typical fabrication result!

The Leberelory for Physical Sciences

•This teaches us how to engineer quantum limited detection where $h\omega$ is growing smaller and smaller (attempt at MHz) on systems that have huge numbers of degrees of freedom that must be controlled.

•This forces us to consider carefully the interaction between the measuring device and the measured quantum system. These studies will teach us intelligent measurement strategies (QND, indirect measurement, stroboscopic.....) (Quantum Engineering)

•Reveals the physics of decoherence and entanglements, relevant to the engineering of quantum coherent solid state devices (Quantum Computers?)

•This work will push the boundary between the classical world that we live in and the bizarre behavior that underlies reality (Foundations of Physics).

Will Quantum Mechanics break-down on large length scales?

My Group and Collaborators

The Leberatory for Physical Sciences

Laboratory for Physical Sciences (LPS):

Marc Manheimer Carlos Sanchez		NSA	
		UMCP-grad student	Cooper-Pair Box
Akshay Niak		UMCP-grad student	1
Ben Palmer		NSA	
Elinor Irish		Rochester-grad student	Vî
Olivier Buu		post doc	
Matt LaHaye		UMCP-grad student	
Patrick Truitt		UMCP-grad student	Nanomechanics
Benedetta Camarota		post doc	
Alex Hutchinson		post doc	
Harish Bhaskaran		UMCP-grad student	Atomic Trans
<u> Collaborators D</u> an Stick		Univ. Michagan-grad	monne rraps
Michael Roukes and his group	Caltech		
Chris Hammel and Denis Pelekhe	ov Ohio State		
Miles Blencowe	Dartmouth		
Andrew Armour London		ege	
Asa Hopkins, Kurt Jacobs, and S	alman Habib 🏾 I	LANL	
Ivar Martin	I	LANL	
Halina Rubinsztein-Dunlop Univ. of Que		ensland	
Chris Monroe Univ. of		higan	
Kamil Ekinci	Boston Unive	ersity	
Pierre Echternach	JPL / Caltech		

- Entanglement with solid state qubits looks possible: mechanical superpositions
- Nanomechanical "QED" experiments look promising
- Are mechanical resonators useful as a quantum bus for charge qubits?
- Can we expand the domain of quantum mechanics?

This work is supported by National Security Agency (NSA)

Our Motto:

Putting the *Spook* in the "Spooky actions at a distance"

schwab@lps.umd.edu