ransmannen Advanced Studies Institute

(1) and (3) Sambache. Publication Street from DVSR page (2004)

Surface Micromachining and Inertial Sensors

Tutorial 2A

Bob Sulouff Analog Devices Inc. Cambridge, MA. 02139

Bob.Sulouff@Analog.com 617-761-7656

Presentation Outline

- Technology of MEMS
 - Surface Micromachined MEMS
- Processing
- Inertial Sensing
- Conclusions

Introduction

- Micromachining is a subset of Microelectronics
 - Semiconductor Infrastructure
 - Semiconductor Equipment
 - Productivity Parallels
 Semiconductors

What is MEMS? (Microsystems Technology, Micro-Mechantronics)

Micro-Electro-Mechanical-Systems Batch fabricated like IC's (chips) with mechanical structures

Semiconductor Productivity

transistors

MEMS Technology

Bulk Micromachining

- Pressure Sensors
- Accelerometers
- Printing Nozzles

Surface Micromachining

- Pressure Sensors
- Accelerometers
- Projector Displays

LIGA

Mechanisms

MEMS Sensors Are More Than a Die

Packaging

Approximately 33% of the cost
Most of the reliability issues
Difficult to standardize

***Testing**

Approximately 33% of the cost

Test tools needed for characterization

Special tools needed

Requires mechanical and electrical design

Integration at Different Levels

Integration in Package

Single Chip

Integration on Chip

Surface Micromachining *i*MEMS®

1911 S.S. 1991

iMEMS Process Flow

NPN NMOS

(A) Circuit Formation

Sensor

iMEMS Process Flow

Pedestal/XBridge release process

Process Sequence for *i*MEMS[®] BiMOS + MEMS + Thin Film Resistors *Process Silicon Substrate for CMOS and

- **Bipolar Devices**
- Reserve Area for Mechanical Polysilicon MEMS
- Deposit Mechanical Polysilicon for MEMS
 High Temperature Anneal of Polysilicon
 (3hr @ 1100 deg C)
- Process Thin Film Resistors and Metal Interconnect
- Etch Sacrificial Layer
 - Support Polysilicon with photoresist

Analog Devices Micromachined Products Dedicated Fab >3 million accels per month, < 10 ppm

QS9000 Compliant Fab, BiCMOS & MEMS

Processing Semiconductor Tools

ETCH

Photo Coat/Develop

Polysilicon Properties

Grain structure for 2um 580 Deg C undoped film with no O2

Grain structure for the same deposition conditions but with O2 added to the deposition step using N2O2 mix.

Sub Nanometer Coatings

Die Singulation for MEMS

- Protect MEMS devices with a temporary cover
- Up-side-down saw

5319155 I I **1** 1

US Patent
 5,362,681
 (Analog
 Devices)

Dicing Exposed MEMS structures

Accelerometer Die

Front-end Process Technology: How has iMEMS evolved?

Capping

Wafer level (4 masks)

- Capabilities
 - Better control of environment around sensor
 - □ pressure & gas species

Lower die stress

die attach choices open

Reliability/Quality

Lower particle levels

Enables lower cost

- * packaging (i.e., plastic)
- foundry assembly

Front-end Process Technology: How has iMEMS evolved?

Capping

Wafer level (4 masks)

- Capabilities
 - Better control of environment around sensor
 - pressure & gas species

Lower die stress

die attach choices open

Reliability/Quality

Lower particle levels

Enables lower cost

- plastic packaging
- foundry assembly

Accelerometer Packaging Trends Package Evolution

	Header	Cerdip/Cerpa	LCC	QFN	WSP
Xmm	10	10	5	4	2
Ymm	10	10	5	4	2
Zmm	7	5	2	1.45	0.9

Lead Free Packages

Assembly & Test Operations Subcontractor in Philippines

Dedicated Line in Large Factory 200 people for accelerometers

Issues to Deal With

Testing Machines not Developed Measurement Standards Inadequate Dynamic Parameters and Vibration

Solution

Semiconductor Handler Based Tool Custom Tooling – Exclusive IP Serialized Parts – OCR Transfer to Off-Shore after qualification

< 1 FIT (53 million device hours, MTBF 6.6 X 10 ⁹ hr)

Inertial Sensors in Vehicles

Vehicle Dynamic Control System

Navigation/Driver Information System

Body/Chassis Control System

Satellite Sensor

Dual-axis airbag sensor

Low g chassis control sensor

Seatbelt Pretensioner

*i*MEMS[®] Technology <u>Accelerometers</u> What Does an Accelerometer do? **MOTION & TILT MEASUREMENT** Measurement of static gravitational force *e.g. Tilt and inclination Measurement of dynamic acceleration *e.g. Vibration and shock measurement Inertial measurement of velocity and position Acceleration single integrated for velocity Acceleration double integrated for position

*i*MEMS[®] Technology

F=MA *Acceleration can be measured using a simple mass/spring system.

- Force = Mass * Acceleration
- Force = Displacement * Spring Constant
- So Displacement = Mass * Acceleration / Spring Constant

*i*MEMS[®] Technology

Sensor Principle: Differential Capacitive Sensing

- Use Silicon to make the spring and mass, and add fingers to make a variable differential capacitor
- Measure change in displacement by measuring change in differential capacitance

Integrated Micromachined Accelerometer

*i***MEMS[®] Technology** Accelerometer Beam (ADXL202)

*i*MEMS[®] Technology

the state of the s

Accelerometer beam (ADXL202, one corner)

*i*MEMS[®] **Technology**

- Amplifier with adjustable gain (via thin film laser trim)
 - Zero g offset and sensitivity are laser trimmed at wafer level
 - How do we trim sensitivity without shaking the part?
 - * Fn =sqrt (K/M) where K is spring's displacement vs force
 - We measure the resonant frequency of the beam to learn the mass and spring constant
- Output filter
 - Simple R-C filter for low-g products (internal R, external C)
 - 2 pole switched capacitor filter on high-g parts

XL276

Early Accelerometer Design Evolution

XL50

1010 States

XL76

ADXL78 and 278 Full Differential Designs

Mechanical Design Duplicated Differential Capacitance Demodulation of Two Channels

Integrated Micromachined Gyro

Single Chip Rate Sensor 5V Operation Std Atmosphere 150 deg per second Self-Test 0.03 deg/sec/sqrt hz Compensated 5%

Lessons Learned In Accelerometer Development of Meso Structures Detecting Nano dimensions now applied to sub picodimensions

Single Chip

Future Trends More Integration of Circuit Functions

- Communications
- Calibration and Identification
- Wireless
- Use of Silicon-on-Insulator
 - Preprocess the Wafer for MEMS
 - Foundry the Semiconductor Process
 - Use DRIE Etching to Access the Buried Oxide
 - More Mass for Inertial Devices

Note: CMP wafer planarization is performed after trench back-fill

- Deep Reactive Ion Etch Stop at Buried Oxide
- Etch oxide beneath MEMS structures
- Strip Protective Photoresist

SOI Accelerometer Isolation Trench New Process Applied to

High Volume Accelerometer

Trench Isolation for SOI MEMS

- DRIE trench etching, stopping on buried oxide
- Deposit dielectric lining
- Polysilicon refill
- CMP to planarize

Integrated SOI Sensor

Жура,

and the part of

and a local sector of the sector base

Conclusions

- MEMS Technology is based on microelectronics and can have similar economic advantages
- Surface Micromachining builds layers over a sacrifical level
- Inertial MEMS devices are accelerometers and gyroscopes that measure motion
- The trends are to smaller devices with multiple axis of sensing

Panamerican Advanced Studies Institute

San Carlos de Bariloche, Palagonia, Argentina 21-30 June 2004

Questions Please