ranamentary Advanced Studies Institute

(1.2.11) As Sambache, Pulagonia, Alternation D1268 pp. 2004

Design and Development of Accelerometers and

Tutorial 2B

Bob Sulouff Analog Devices Inc. Cambridge, MA. 02139

Bob.Sulouff@Analog.com 617-761-7656

Presentation Outline

- Inertial Sensor Design Approach
- Product Improvements
- Applications
- Syroscope Design & Applications
- Conclusions

*i*MEMS[®] Technology

F=MA *Acceleration can be measured using a simple mass/spring system.

- Force = Mass * Acceleration
- Force = Displacement * Spring Constant
- So Displacement = Mass * Acceleration / Spring Constant

*i*MEMS[®] Technology

Sensor Principle: Differential Capacitive Sensing

- Use Silicon to make the spring and mass, and add fingers to make a variable differential capacitor
- Measure change in displacement by measuring change in differential capacitance

ADI Accelerometers: Key Dimensions Interesting Facts

- * 0.1 pF per side for the differential capacitor
- 20 zF (10-21 F) smallest detectable capacitance change
- * 2.5 pm minimum detectable beam deflection (one tenth of an atomic diameter)

*i*MEMS[®] **Technology** Capacitance to Voltage Conversion

Design Evolution ADXL50 (1993)

Circuit architecture

Closed loop

- Concerns about polysilicon lead to force feedback design
- 0.6 V p-p complimentary modulation of differential capacitors
- Resistive biasing/FB (3 MΩ)

MEMS design

- Dielectric under structure
- Anchors at periphery
- Beam not centered or symmetric

Design Evolution ADXL76 (1996)

Circuit architecture

Open loop

- Polysilicon robustness now confirmed
- Full supply complimentary clocks
- Reduced die size
- Ratiometric
- Switched cap filter
- Switch biasing

MEMS Design

- Conductor under structure
- Anchors on axis
- Beam centered & symmetric
 - Better offsets & tempco's

Design Evolution ADXL78 (2002)

Circuit architecture

Closed loop

- Overload performance pushed design back to feedback
- Servo complimentary clock amplitude
- Differential architecture
 Ratiometric & EMI resistant

MEMS Design

- Two structures
- Conductor under structure
- Two springs/structure
- Robust to process variations
 Beam centered & symmetric

Layout

Compact!

Niju (

15

	ADXL50	ADXL76	ADXL78	ADXL40	
	(1993)	(1996)	(2002)	(2004)	
Die Area	10.8	5.4	2.7	2.5	mm ²
MEMS Area	0.43	0.38	0.27	0.22	mm ²
% MEMS	4.0%	7.0%	10%	8.8%	
C _s	100	100	40	160	fF
f _o	25.0	24.5	24.5	12.5	kHz
Noise	4.0	1.0	1.0	1.0	mgee/ rt.hz
Offset	3.0	1.0	0.5	0.5	gee

Design Example: ADXL203 50 mg accurate, +/- 1.7 g, 2 axis XL

Problem:

How do we get a 10x improvement in null accuracy with minimal investment?

Solution:

- Start with ADXL202 platform and make minimal changes
 - Structure
 - Electronics

Design Example: ADXL203 50 mg accurate, +/- 1.7 g, 2 axis XL

Problem:

How do we get a 10x improvement in null accuracy with minimal investment?

Solution:

- Start with ADXL202 platform and make minimal changes
 - Structure
 - Electronics

Move anchors towards center of die Modeling & experiment verification Lower resonant frequency (10 kHz -> 5.5 kHz)

Use 4 µm polysilicon

ADXL203 Highlights

- Culmination of 15 years of learning
 - Process, structure design, electronics, and packaging
- Typical 50 mg absolute accuracy over temperature, -40 to 125C
 - Measure absolute tilt to 3 degrees over temp
 - Resolve tilt changes to 0.01 degrees (1 mm over 100 m)
- Minimalist circuitry
 - For small size, thus low cost
 Low noise (110 µg/rt Hz.)
 Low drift
- Small 5 x 5 x 2 mm LCC package enabled by integration

* Details:

- Sensitivity
 - * 8.2nm/g
- Resolution
 - * 1Hz BW -> 800fm (Gyro 16 fm)
 - 100 fF -> 50zF (Gyro 12 zF)
- Offset
 - * 0.05 g -> 4 Å (250 ppm)

Zero g vs. Temperature XL203 Characterization Lot 74990 Group B

5 degrees per minute going down, 10 degrees per minute going up

Interesting Applications

- Air Bags
- Gesture Recognition
- Security
- Tilt Correction
- GPS Inertial Ref
- Toys Sports
- Vibration Sense
- Projector Keystone

"There are 1.6 MEMS devices per person in use today in the U.S. and the number is expected to grow to nearly 5 devices per person by 2004.

—MEMS Industry Group

- •Air Bag Systems
- Navigation Systems
- •Car Alarms
- Vehicle Dynamic
 Control Systems
- Rollover Safety
 Systems

ADI Sensors Used in Consumer and Industrial Products and Applications

631255 Im -

Blood Pressure Monitor

Company: OMRON

Product: Portable Blood
 Pressure
 Monitoring
 Device

- ADI Inside: ADXL311JE
- Function: Tilt Sensing
 - Measures forearm angle to ensure correct positioning of the wrist (at heart level)
 - Results in higher blood pressure measurement accuracy

Developing Applications Motion Sensing in Smart Handhelds

- Tilt-sensing and motion recognition for handheld devices
- Intuitive spatial browsing on small screen devices
- Orientation and location detection for mobile phones

*i*MEMS[®] Technology For Handhelds

Application Ideas

Situational Awareness

Enables optimization of phone features and functions based on the detection of

environmental context, e.g.:

- *Turns off display when phone is held at ear level
- Turns off vibrating mode when phone is not carried or held (not moving)
- Automatically activates pedometer function when walking motion is recognized
- Automatically selects portrait or landscape display orientation for picture taking or gaming
- Manages incoming calls based on user's activity level

*i*MEMS[®] Technology For Handhelds

Large Document Panning and Zooming

Enables intuitive display control of large documents (e.g. maps) through tilt or inertial sensing

Single-Handed Operation

Enables one hand operation of simple functions

Data Entry/Selection

Enables menu and cursor control through tilt sensing and motion detection

Intuitive Gaming

Enhances gaming experience by providing intuitive, button-less control of gaming action

Electronic Compass Tilt-Compensation

Cellular Phone/Pedometer

- Company: FUJITSU
- Product: DoCoMo Cellular Phone for Japanese Market
- ADI Inside: ADXL311JE
- Function: Motion Sensing for Pedometer Function
 - Displays number of steps walked
 - Displays distance walked based on stride input
 - Displays calories expanded based on user weight input

and the second sec

Pedometers

Pedometer model SDM [Tailwind and SDM Triax 100 Company: Nike, Inc. ADI Inside: iMEMS[®] ADXL78 and ADXL278 accelerometers

Function: Shock, tilt and inertial sensing for foot motion measurements resulting in accurate speed and distance information

Laptop Security

Anti-Theft[™] PCMCIA Card for Laptop Computers Company: Caveo Technology ADI Inside: iMEMS[®] ADXL202E accelerometer

Function: Inertial and tilt measurement for security perimeter and motion password setting

Game Boy[®] Advance with Kirby Tilt-n-Tumble[™] and Happy Panechu[™] Company: Nintendo ADI Inside: iMEMS[®] ADXL202 and ADXL202E accelerometers

Function: Tilt measurement resulting in intuitive game feature control

MEMS in Personal Communications Intel Developers Conf.

Future Potential Uses of MEMS

Antennas Color bi-stable display Micro-switches **Tunable capacitors** and inductors **Tunable filters**

Directional microphone

Wireless Buildings

이 나는 것 같이 많이 많이 했다.

Integrated Micromachined Gyro

Single Chip Rate Sensor 5V Operation Std Atmosphere 150 deg per second Self-Test 0.03 deg/sec/sqrt hz Compensated 5%

Lessons Learned In Accelerometer Development of Meso Structures Detecting Nano dimensions now applied to sub picodimensions

Single Chip

iMEMS Gyro Sensor

18312185 I M - M

Coriolis Accel Full Scale Deflection 0.3 Nanometers Quadrature Rejection 1 ppm

Design Issues: Aerodynamics, Shock, Vibration, Thermal

DEVIDS

Simplified Gyro Blockdiagram

1317 S. 174 - 7

Gyro Packaging: in Vacuum or Air ?

Gyro Structure

Separated Accelerometer and Resonator

Electronic Design and Mechanical Design Interdependent

15110 255 J - N - P

Functional Block Diagram

Gyro - Root Allan Variance

Seconds

$$\sigma(\tau) = \sqrt{\frac{1}{2 \cdot (m-1)}} \cdot \frac{m-1}{\sum_{i=1}^{m-1} (y(i+1) - y(i))^2} \text{ for } m \text{ successitve } y(i) \text{ averaged}$$

Automotive Gyroscope Markets

Vehicle Dynamic Control

Interaction between anti-lock brake, electronic brakeforce distribution, traction control, and active yaw control systems to achieve dynamic stability

Rollover

Extension of airbag safety systems for SUVs, vans, pickup trucks, and high-end vehicles

Navigation

 Provide additional real-time location input and directions when GPS satellites are not available.

- Flight Controls/Training Systems
 - Unmanned aircrafts
 - Supplement to flight dynamic co
 - Supplement to GPS Guidance
- Robotics
 - Industrial robots
 - Toy Robots
- Weapon Systems
 - Smart Artillery Shells
 - Missile Guidance
- Platform stabilization
 - Camera
 - Machinery
 - Wheelchair stabilization
- Computer/Consum
 - Input devices
 - Handheld GPS

Conclusions

- Inertial Sensor Designs are Mechanical Structures of Mass Supported by Springs
- Inertial Forces on the Mass Result in Displacement that is Sensed Capacitively
- New Trends in Applications for Motion Detection are Occuring in Hand-held Devices and Portable Devices
- Gyroscopes Vibrate an Accelerometer and Measure Coriolis Acceleration that Indicates Angular Rate

Panamerican Advanced Studies Institute

San Carlos de Bariloche, Palagonia, Argentina 21-30 June 2004

Questions Please