Microactuators and Sensors for Microfluidics and Lab on a Chip applications

Massood Tabib-Azar Case Western Reserve University Cleveland, Ohio 44106

Partially supported by grants from NIST, WPAFB, and SRC

Slides 20-56 are contributed by Michael Ramsey (Oak Ridge)

General reference: Nanoelectromechanics in Engineering and Biology, by M. P. Hughes

Current Status of Electronics

- The current status of the integrated circuits
 - Device size ~ 10 nm
 - Integration Level ~10⁹/chip
 - Power ~ 100 W Leakage ~ 20 W
 - Other features: Power Supply ~1.5 V

Intelligent Silicon

Nano is Here New Devices, Materials, and Processes Expanding the Silicon Canvas

EXTENDING MOORE'S LAW Discrete SSI LSI VLS

Silicon Innovation Enabling Convergence

Mechanica

Sensors

Optical

Wireless

Nano

MEMS/NEMS Microfluidics Lab-on-a-chip

EXPANDING

Worldwide Semiconductor Revenues

Average Transistor Price By Year

Integrated Circuit Complexity

The First Planar Integrated Circuit, 1961

다가 되면 대는 다른 다가

Source: Intel, post '96 trend data provided by SIA International Technology Readmap for Samiconductors (ITR5)

* [ITRS DRAM Half-Fitch vs. Intel "Lithography"]

Need to Keep the Junctions Cool

Performance (Higher Frequency)
Lower leakage (Exponential)
Better reliability (Exponential)

Processor Power (Watts) - Active & Leakage

New Materials, Devices Extend Si Scaling

Changes

Made

Metal lines

Al > Cu

Insulating

dielectric

SiO₂ → SiOF

(low-k)

>CDO

Interconnects Source: Intel

Ultra Low-k -Dielectric

Future

Options

Intel Nano Transistors

Emerging Research Architectures

			₩ 0			
Авсяниесник	3-D Integration	QCANTUM CPLIJITAR AUTOMATA	DEFECT Toterant Architecture	MOLECULAR ARCHITECU RE	CELLULAR NONLINEAR NETWORKS	QUANTIM C'OMPUTING
Device Emplementatio N	CMOS with dissimilar material systems	Arrays of quantum dots	Intelligently assembles magalexizes	Molecular switches and menories	Single electron array orchitectores	Spin resummer transistors, MAIR devices, Single flux quantum devices
ADVANJAGES	Lass interconnect delay, Enables mixed aschnology solutions	High functional density. No interromects in signal path	Supports hardware with defect densities =50%	Supports memory based computing	Enables utilization of single electron devices at mom compenature	Equimential performance scaling, Enables untreakable cryptography
CHALLENCES	Heat removal, No design wols, Difficult test and measurement	Limited fan ont, Dimensional control (bw temperature operation), Sensitive to background charge	Requires pre- computing test	Limited Functionality	Subject to background noise, Tight tolerances	Extreme application limitation, Extreme technology
ATURITY	Demonstration	Demonstration	Demonstration	Concept	Demonstration	Concept

Intelligent Silicon

Nano is Here New Devices, Materials, and Processes Expanding the Silicon Canvas

EXTENDING MOORE'S LAW Discrete SSI LSI VLS

Silicon Innovation Enabling Convergence

Mechanica

Sensors

Optical

Wireless

Nano

MEMS/NEMS Microfluidics Lab-on-a-chip

EXPANDING

Microfabricated Chemical Measurement Systems

- Lab-on-a-Chip
 - Microfabricated fluidic circuits for chemical analysis
- Nanofluidics
- Micro Ion Trap Mass Spectrometry
- Micro Ion Mobility Spectrometry

Lab-on-a-Chip: Objectives

- Integrate multiple steps of a measurement or synthesis protocol into a microfabricated fluidic device
- Utilize existing laboratory principles taking advantage of scaling where possible
- Design devices that can be mass produced

Lab-on-a-Chip: Benefits

- Automation
- Reagent consumption reduced 10⁴ 10⁶
- Speed 10²
- High quality data
- Scale up at low cost
- Inexpensive/disposable devices (chips)
- Standardized platforms
- CAD/A Rapid prototyping

Applications

- In-situ Measurements
 - Process Control
 - Environmental Monitoring
- Field Analysis
 - Environmental Monitoring
 - Forensics
- Medical Diagnostics
 - Point-of-Care
 - Emergency Care
 - Closed-Loop Monitoring/Dosing
- High-throughput Laboratory Analysis
 - Combinatorial Discovery
 - DNA Sequencing
 - Proteomics

Synthesis Applications

- Materials Discovery
 - Vaccines
 - Coatings
 - Electronics
- Just in time production
 Hazardous materials
- Production development/optimization
 - Pharmaceuticals
 - Materials

Microfluidic Devices

- Materials
 - Silica (and other silicon related)
 - Plastics (polymers)
- Dimensions (channels)
 - 20-100 μm wide
 - 0.05-30 µm deep
 - 1-20 cm² substrates
- Volumes
 - 1 fL 1 nL manipulations
 - 1-100 μ L reservoirs
- Fluid transport
 - electrokinetic
 - pressure
 - surface tension

Electrokinetic Transport

Electrokinetic Forces

Force	AC or DC	Origin (Force)	
Electrophoresis	DC	Caused by charge in E-field (QE)	
Dielectrophoresis (DEP)	AC/DC	Caused by induced dipole in field gradient (Qd. ^V E)	
Electro-osmosis	AC/DC	Caused by interaction between double layer charges and tangential E-field	
Electrorotation	AC	Caused by dipole lag in rotating E- field (Torque=Dd X E)	
Traveling wave DEP	AC	Caused by dipole lag in traveling E-field	
Electro-orientation	AC/DC	Caused by interaction between dipole and electric field	

Polarization, Relaxation and Dispersion

- $Z^{-1}=R^{-1}+X_c$ Resistance: $R=d/\sigma A$
 - Reactance: $X_c = 1/\omega C$

• C=ɛ*A/d

 $\omega \nvDash 0$ σ dominates, $\omega \nvDash 8$ ε_r dominates

in between there is a transition ∠ dispersion

Dispersions

- Internal dispersion:
 - Debye relaxation
- Dispersion at the interface between two different materials:
 - Maxwell-Wagner relaxation
- These and other dispersions results in frequency dependence of forces on nanoparticles

Dielectrophoresis/Electrophoresis

Electric Double Layer

- Negative dielectrophoresis
- Positive dielectrophoresis
- Brownian motion, dielectrophoretic, and electro-osmotic balance

Negative dielectrophoretic force arises when ε_{real} becomes negative

Constant Volume (Pinched Valve)

Anal. Chem. 66, 1107 (1994)

Functional Elements

Sub-Milisecond Electrophoresis DCF response inject 1.5 0.0 0.5 1.0 time [ms] -_{sep} = 200 μm Anal. Chem., 70, 3476 (1998)

E_{sep} = 53 kV/cm

Very High Efficiency Separation

Electrokinetically Actuated Segmented Flow

Field Free Pumping Segmented Flow

Nanofluidics will be Enabling

Emulation and interface to biological systems

- Artificial cells
 - Biological and chemical sensing
- Molecular characterization
 - Molecular counting
 - DNA sequencing
 - Protein and peptide sizing
- Fabrication (synthesis) of single molecules
 - Heterogeneous polymers
 - Complexes with controlled substitution
- Hardened (self-repairing) electronics
 - Fluidic-based molecular electronic gates
 - Molecular-based memories

Electro Hydrodynamic Separation of DNA

Stochastic Chemical Sensing with Ligand Gated Ion Channels

Planar Lipid Bilayer Apparatus

Addressable Ion Channel Arrays

FIB Milled Nanochannels in SiO2 Membranes

- 40-nm thick SiO₂ membrane
- 500 µS FIB dwell time, 70 pA
- AFM tip: $r = 40 \text{ nm}; \theta_{1/2} = 35$
- Estimated diameter ≈ 50 nm

Conductance Measurements

100 µS dwell time

Electrolyte: 1 M KCl