Microactuators and Sensors for Microfluidics and Lab on a Chip applications

Massood Tabib-Azar Case Western Reserve University Cleveland, Ohio 44106

Partially supported by grants from NIST, WPAFB, and SRC

Slides 20-56 are contributed by Michael Ramsey (Oak Ridge)

General reference: Nanoelectromechanics in Engineering and Biology, by M. P. Hughes

Functional Elements

FIB Milled Nanochannels in SiO2 Membranes

- 40-nm thick SiO₂ membrane
- 500 µS FIB dwell time, 70 pA
- AFM tip: $r = 40 \text{ nm}; \theta_{1/2} = 35$
- Estimated diameter ≈ 50 nm

Addressable Ion Channel Arrays

Fundamental Questions

- Can nanoscale channels be fabricated to molecular dimensions?
- What is the dimensional stability of a molecular scale channel?
- Can interfacial characteristics be sufficiently controlled
- What are the characteristics of fluid transport in molecular scale channels?
- How can such fluids/molecules be probed experimentally?

Nanofluidics will be Enabling

Emulation and interface to biological systems

- Artificial cells
 - Biological and chemical sensing
- Molecular characterization
 - Molecular counting
 - DNA sequencing
 - Protein and peptide sizing
- Fabrication (synthesis) of single molecules
 - Heterogeneous polymers
 - Complexes with controlled substitution
- Hardened (self-repairing) electronics
 - Fluidic-based molecular electronic gates
 - Molecular-based memories

Materials

- Micro- and nanoscale fabrication
- Interfacial chemistry
- Nanoscale transport
 - Fluids
 - Polymers
 - Experiment and simulation benchmarking

Sensors

- Integrated flow sensors
- Integrated voltage sensors
- Ultrasensitive analyte detectors
 - Non-selective
 - Selective

Future Directions

- Biochemistry integrated with HP separations
 - Single cell assays
 - Protein manipulations
- Nanofluidics
 - Low dimensional fluid transport
 - Molecular transport (r_q > h)
 - Single molecule manipulation, detection, and characterization
- Chemical synthesis
- Handheld microfabricated mass spectrometers

Electric Double Layer

Electrokinetic Forces

Force	AC or DC	Origin (Force)		
Electrophoresis	DC	Caused by charge in E-field (QE)		
Dielectrophoresis (DEP)	AC/DC	Caused by induced dipole in field gradient (Qd. ^V E)		
Electro-osmosis	AC/DC	Caused by interaction between double layer charges and tangential E-field		
Electrorotation	AC	Caused by dipole lag in rotating E- field (Torque=Dd X E)		
Traveling wave DEP	AC	Caused by dipole lag in traveling E-field		
Electro-orientation	AC/DC	Caused by interaction between dipole and electric field		

Electrokinetic Transport

- Negative dielectrophoresis
- Positive dielectrophoresis
- Brownian motion, dielectrophoretic, and electro-osmotic balance

Negative dielectrophoretic force arises when ε_{real} becomes negative

Existing Tools

- Scanning local probe microscopy offers nearly atomic resolution:
 - Scanning tunneling microscopy (STM)~1Å
 - Atomic force microscopy (AFM)~ 10Å
 - AFM-related techniques>10Å
 - Magnetic force microscopy (MFM)
 - Scanning capacitance microscopy (SCM)
 - Near-field scanning optical microscopy (NSOM)~ 50Å

Atomic Force Microscopy (AFM) of Cells

Approach

Traveling wave imaging

Resolution ~ Wavelength of incident E&M (.) Advantage: One shot imaging

E&M: electromagnetic wave

Resolution ~ d<< λ Disadvantage: Point by point imaging

 λ : wavelength of E&M

d: diameter of the waveguide opening

Scanning Evanescent Microwave Microscopy

- Evanescent fields are produced at the tip of a resonator
- Interaction between evanescent microwave field and sample
- Monitoring the resonance change of the probe resonator

S₁₁ Spectra of Human Molar Enamel Probe Air 0.8Dar and a start E... 0.1E-A Reflection Coefficient 9.0 Enamel E 0.0Signal -(),] 0.2-().2 0.995(0.997)1.002(0.993)1.004Normalized Frequency (f/f₀)

Experimental Arrangement

Fig. Schematic of the experimental setup

SEMP IMAGES: Topography & Sheet Resistance

Sample: $YBa_2Cu_3O_{7-\delta}$ thin film on 2" sapphire wafer

Frequency: 7.5 GHz

Temperature: 300 K

500 μm probe, in non-contact mode

Appl. Phys. Lett. 72, 861 (1998)

SEMP Image of Mold Release De-Bond with Two Bubbles in Epoxy

SEMP Integrated with AFM Setup

- Impedance spectroscopy (performed with an AFM) is used to image embedded structures in a material
- These embedded nanoparticles cannot be detected with traditional AFM topographical probing.
- A.C. signal applied between tip and sample results in a displacement current that is used to detect embedded structures.

For Ei < Em, the field bows outward for a dielectric embedded structure

Dielectric, Em

Capacitance is highest for a metallic embedded structure

AFM-Compatible SEMP tip

- No cutoff frequency with coaxial geometry
- Shielded to limit Coulomb interactions and increase electric-field resolution
- Orthogonal, simultaneous probing of topography/field

SEMP-AFM Combined Imaging

Probe Cross Section

Mechanical Design

$$E = \frac{E_{si}t_{si} + E_{LTO}t_{LTO} + E_{Al}t_{Al}}{t_{si} + t_{LTO} + t_{Al}} \qquad \rho = \frac{\rho_{si}t_{si} + \rho_{LTO}t_{LTO} + \rho_{Al}t_{Al}}{t_{si} + t_{LTO} + t_{Al}}$$
$$K = \frac{6EI}{L^3} = \frac{EW}{2} \left(\frac{t}{L}\right)^3 \qquad f_0 = \frac{3.52}{\pi} \frac{t}{L^2} \sqrt{\frac{E}{12\rho}}$$

W = 50 µm	L = 300 µm		L = 450 µm		L = 1000 µm	
	t = 3 µm	t = 5 µm	t = 3 µm	t = 5 µm	t = 3 µm	t = 5 µm
Spring constant (N/m)	5.84	21.7	1.73	6.42	0.16	0.59
Resonant frequency (KHz)	95.5	150	42.5	66.5	8.60	13.5

Scanning Near-field Microwave Microscope Probe

Three dimensional view of an SNMM probe

Cross-section view along a waveguide arm

Microfabrication: Tip Formation

Thermal oxidation Lithography Oxide etching Plasma etching tip

Oxidation sharpening Lithography Oxide etching P+ ion implantation

Si Tip after Plasma Etching

Si Tips before and after Oxidation Sharpening

(a) Before oxidation sharpening

(b) After oxidation sharpening

Microfabrication: Waveguide

Metal deposition Lithography Metal etching

LTO deposition

Microfabrication: Shield Layer

Metal deposition Lithography Metal etching Lithography LTO etching

Top view after step (e)

Microwave Design

Released SNMM Probes

Microfabrication: Tip Exposure

PR coating Tip exposure Metal etching LTO etching

Lithography Si RIE

Y. Wang and M. Tabib-Azar, "Microfabricated Near-field Scanning Microwave Probes," Electron Devices Meeting, IEDM '02. Digest. International, IEEE, pp. 905-908 (2002).

Co-axially Shielded Tip (2)

Y. Wang and M. Tabib-Azar, "Microfabricated Near-field Scanning Microwave Probes," Transducers '03

Coaxially shielded tip

Carbon Nanotubes & Nanospheres

Self-Assembled on Electrodes

×15.

-8×

5. 12 14 M

Nano-Device Characterization

AFM Head – Microwave Tip Assembly

SNMM probe

Co-axial cable

Mechanical Oscillation Spectrum

Measured resonant frequency is 170.92 KHz, and quality factor is 317. The design value is 150 KHz with $L = 300 \mu m$, $W = 50 \mu m$, and $t = 5 \mu m$.

AFM-Compatible SEMP tip

Explorer[™] AFM System

DC Conductivity between A Waveguide and A Shield

Voltage (V)

DC Conductivity between A Waveguide and An Implanted Tip Region

DC Conductivity between the Tip and An Au Sample

Microwave Measurement Setup

S11 Measurements in Air and over An Au Sample

Schematic of the Image Scanning Circuit

Simultaneous AFM and Scanning Near-field Microwave Images (2.8 GHz)

Use microwave AFM to see inside the cell

Microwave AFM amplitude

Microwave AFM phase

Significance of Scanning Near-field Microwave Microscope 1.8 GHz)

Micro-Fluidic: Experimental Arrangement

Detection of Cavitation bubbles using SEMP <0.1 μm Bubbles

