Fabricating Microfluidic Devices for High-Density Biological Assays

Todd Thorsen Department of Mechanical Engineeering MIT

Panamerican Advanced Studies Institute Micro-Electro-Mechanical Systems San Carlos de Bariloche, Argentina 22 de Junio, 2004

Outline for the Talk

- Introduction to Soft Lithography
 - Chip Fabrication
 - Multilayer Technology
- High Density Cell-based Arrays
 - Microfluidic LSI
 - Detection Systems
 - Biochemical Applications
- Microfluidic DNA Arrays

Introduction to Soft Lithography

- Inexpensive and rugged elastomeric materials: PDMS, polyurethane, etc.
- Easy and Forgiving Manufacturing Process
- Disposable and thus no cross contamination
- Simple Flow Design and Integration

Microfabrication

- Mold: Photoresistpatterned silicon wafer
 - Positive relief channel template
- Device: Elastomer
 - Cured on silicon mold
 - High fidelity negative replica of channels
 - Hermetically seals to coverslip

Valve fabrication – Multilayer Soft Lithography

- Spin coat silicone over (A) rounded photoresist flow channels and (B) pour thick layer of silicone over control channels
- Primary Cure
- Punch and align
- Secondary secondary cure
- Pneumatic pressure in control layer deflects interface membrane between the two layer, creating a valve.

M. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. QuakeScience, 288: 113-116 (2000).

Valve Geometry

- Geometry of microfluidic channel that you want to close off is critical
- Square- Inefficient closure/ leaky
- Round Great closure

High Density Picoliter Volume Chips: Introduction and Objectives

-Valves used to compartmentalize cells/enzymes into small reaction chambers (picoliter scale)

-Substrate can either be introduced with the enzyme or separately for controlled mixing

Microfluidic LSI

- So you have thousands of compartments on a single chip...How do you address them?
- An integrated control system is necessary for scalability

******	*****	
	E ATA	
*****	1-1-1-1-Y	<mark>/etetetete</mark> te
******	tetete de	*****
********	ielelezeiele	ielelelelele
etetetete	ielele <mark>, l</mark> ele	

*****	********	*****

The Electronics Revolution

The Fluidic Revolution

1.000		
1000		
and the second		
1000		
1.000		
and the second	1 k	1.1
		11.

Multiplexor Valves: Combinatorial power

- 2log₂n valves for n fluid lines
- So....64 rows of fluid lines can be controlled with 12 valves
- Allows complex fluidic arrays to maintain small footprint

Valve response to pneumatic pressure

-Multiplexors work because interconnects do not close flow channels -At 50 kPa, 100x100µm valve closes while 50x100µm valve remains open

First Generation Multilayer Chips: Serpentine Models

Compartmentalization

 Fluid injected into central serpentine channel partitioned off into ~80 picoliter sections by applying pressure to top control line

Chip Purging: Single Row Addressability

- -Each row controlled by multiplexed valve combination
- -Rows of cells/enzymes can be purged and collected
- -Chip useful for enrichment of rare events

Second Generation Multiwell Chips: Single Well Addressability

- Each well can be addressed, removing contents without sorting, using multiple valves combined with external pressure
- Picoliter well volumes
- Highly parallel screening format

Single Compartment High Density Chip

- 1000 wells
-200 pL/well
-Each well individually
addressable

Single Compartment Addressing

- Wells filled with bromophenol blue dye
- Purging accomplished by:
 - -releasing vertical valve pressure
 - -pressurizing fluid in local outflow line

Complex Functionality - Mixing

- Elastomeric Valves in Multiplexed format can be used to construct sophisticated chips
- Dual sample chip with mixing functionality

Mixing Mechanics

- Sequential chip addressing
 - Load
 - Compartmentalize
 - Mix
 - Recovery

Axon Genechip Scanner

- Originally engineered for DNA arrays
- Dual wavelength diode laser scanner (523/635nm)
- 1" x 1" scan at 5 micron resolution in under 5 minutes
- No chip alignment necessary

Enzymatic library screening: Cytochrome c peroxidase in *E. coli*

Wild-type CCP 0.25 mM MnCl2 CCP mutant library

Microfluidic DNA Arrays

- Core Objectives
 - -Low cost
 - -Easy to use
 - -Fast results
 - -Sensitive
 - -Flexible configuration

Existing DNA Microarray Technology

 Expensive
 Requires high level of automation; robotic equipment

 Low Sensitivity
 Probe has to find target DNA over entire chip surface

Microfluidic Strategy

- Pattern a glass slide with markers of interest in columns
- Expose individual samples in rows
- Observe hybridization at the intersections

10µm wide channels (1/6 diameter of Human hair)

Deposition of Target DNA

- DNA introduced into microchannels sealed to glass slide
- Rapid DNA deposition on glass surface occurs in seconds vs. days using current technology

Microfluidic Array Hybridization

Microfluidic DNA Hybridization: Discrimination

- Drosophila (fruit fly) and human DNA targets
- Fluorescently-tagged Drosophila probe

Microfluidic-Microtiter Array

- Standard 96-well microtiter plate (top)
- Microfluidic circuits print samples to slide
- One plate/ 10000 assays

Macro-to-Micro Advantages

- Adapts to industry standard biological equipment (pipettors, microtiter plate loaders)
- Sample handling in the microliter range; easy for benchtop research in small and large laboratories

Future Opportunities

- High-throughput single-cell assays
- Low-cost genotyping
- Clinical diagnostics
 - Pathogen detection
 - Gene upregulation
- Chip integration (sensors/detectors)

Acknowledgements

- MIT- Thorsen Lab
 - Dr. James Benn Senior Visiting Scientist;
 Dept. of Mechanical Engineering
 - Mats Cooper Graduate Student
- Caltech Quake Lab
 - Prof. Stephen Quake
 - Sebastian Maerkl