

Microfabrication Process for a Silicon Thermal Gas Sensor

Taller de "Tecnologías MEMS para Sensores"29-31 de julio de 2002, Buenos Aires

RED IX.I: TESEO "Tecnologías para el Desarrollo de Sensores y Microsistemas"

Cyro Ketzer Saul (cyro@fisica.ufpr.br)

Introduction

- Project of the Device
 - First Generation
 - Second Generation
- Lithographic Masks
- Silicon Wafer Cleaning
- Lithographic Process
- Wet Anisotropic Etch

- Oxidation, Doping and Drive-In
- Metalization Process
- Plasma Etching
- Device Obtained
- Device Characterization
- Gas Measurements

Technology Evolution

Introduction

Doctoral Thesis in Physics

- Universidade Federal do Rio Grande do Sul
- Advisors in Brazil :
 - Prof. Dr. Wido H. Schreiner
 - Prof. Dr. Sérgio Ribeiro Teixeira
- **Experimental Work**
 - Microfabrication Laboratory Electrical Engineering Dept.
 - University of Pennsylvania
 - Advisors in US
 - Prof. PhD. Jay N. Zemel
 - Prof. PhD. Jorge J. Santiago-Avilés
 - Laboratory Advisor and Motivation "Make no mistakes or die"
 - Vladimir Dominko (Lab. Manager)

Project of the Device

- Initial idea:
 - Develop a device able to detect the reaction of H_2 / O_2 catalyzed by Pd at low temperatures. (£ 130 °C)
 - Use a diode as the thermometer instead of resistors, thermopiles or pyroelectric.
- Experimental Constraints
 - Small active area
 - Small thermal mass
 - Fast response
 - Simple (without any built-in electronics for signal conditioning)
- Pre-conclusions
 - Device must be based on a Silicon Membrane
 - It must have an integrated diode

First Generation

Curva I-V do Diodo

Second Generation

• Problems in First Generation

- High value of the diode series resistor
- Depleted n⁺ region
- Mechanical fragility
- Difficult external connection (silver epoxy)

Solutions

- p⁺ doping of the whole surface (except n⁺ region)
- Increase width of the bridges and reduce length
- Increase gold pad size

Lithographic Masks

• Drawings

- Cadkey (Autocad) one device
 - Actual option (LASI Cad http://members.aol.com/lasicad2/index.htm)
- Exported DXF
- Pattern generator program
 - Creates a matrix of devices
 - Generates de codes for pattern generator
- Masks recorded on Emulsion Glass Plates (7 masks)
- Standard photographic development procedure

Silicon Wafer Cleaning

• Standard RCA Cleaning Procedure

- Preliminary Cleaning:
 - Remove excess of fotoresist (when present)
 - Plasma O₂
 - Organic solvent
 - Boil wafers H₂O₂:H₂SO₄ (1:2) 120 °C / 10 min (PIRAÑA)
 - Rinse in DI water (overflow) 5 min
- Remove organic contaminants and certain metals
 - H₂O-H₂O₂-NH₄OH (5:1:1)
 - H₂O₂ (30% unstabilized electronic grade)
 - NH₄OH (29% electronic grade)
 - Submerge holder in cold solution
 - Heat solution to 80oC keep at this temperature 10 min
 - Rinse in DI water (overflow) 5 min

- Stripping of thin hydrous oxide film
 - Submerge wafers (without drying)
 - HF:H₂O (1:50)
 - HF (49% electronic grade)
 - Room temperature / 15 sec.
 - Silicon surface becomes hydrophobic
 - transfer wafer to next solution immediately
- Desorption of remaining atomic and ionic contaminants
 - H₂O:H₂O₂:HCl (6:1:1)
 - H₂O₂ (30% unstabilized electronic grade)
 - HCl (37% electronic grade)
 - Heat solution at 75-80°C
 - Submerge wafers and keep for 10-15 min
 - Rinse in DI water (overflow) 10 min

Process time ~ 1 hr

Lithographic Process

- Positive Resist Process Shipley S1400-27
 - Wafer drying
 - Hot plate 120°C / 10 min
 - HDMS (5 min) Hexametildisilizane
 - Spin Coat 5000 RPM ® 1,2 μm
 - Soft-bake 90-100°C / 10 min
 - Exposition 70 mJ/cm² (necessary)
 - Development
 - Extra exposition UV
 - Post-bake 100-120°C / 4 min

- Negative Resist Process Futurrex NR8-1000
 - Wafer drying
 - Hot plate 120°C / 10 min
 - Spin Coat 2000 RPM ® 1,3 μm
 - Soft-bake 130°C / 60 sec
 - Exposition 90 mJ/cm² (used)
 - Development

Liftoff Negative resist profile

UV - Light

Resist NOT removed during development

Under-etch occurs during the development processing

Wet Anisotropic Etch

- Application
 - **3D** structuring of silicon, channels, membranes, holes
- Procedure
 - Select etchant KOH, EDP (Ethilene Diamine Pyrochatecol), TMAH
 - Select concentration / Temperature
 - Example:
 - KOH 10% / 50 °C
 - 13 μm/h Si[100] 9 nm/h SiO₂

Oxidation, Doping and Drive-In

Wet Oxidation

Application

Mask / Low quality insulation

Procedure

- Heat up the furnace (appropriate temperature)
- Wafers cleaned, etched with BHF, dryed
- Switch from dry N₂ ® dry O₂
- Dry O₂ flow
 load the wafers (slow)
- Switch to $O_2 + H_2O_{vapor}$ (appropriate amount of time)
 - Si [100] 1100°C / 2 h ® ~ 0.7 μm oxide
- Switch to dry O_2 (3 min)
- Switch do dry N_2 (leave 3 min) unload the wafers (slow)

Dry Oxidation

- Application
 - High quality gate insulation (very thin)
- Procedure
 - Heat up the furnace (appropriate temperature)
 - Wafers cleaned, etched with BHF, dryed
 - Switch from dry N₂ ® dry O₂
 - Dry O₂ flow
 load the wafers (slow)
 - Switch to O₂ + TCE_{vapor} (trichloroethane) (appropriate amount of time)
 Si [100] 1100°C / 2 h ® ~ 0.2 µm oxide
 - Switch to pure dry O_2 (3 min)
 - Switch do dry N_2 (leave 3 min) unload the wafers (slow)

Spin-on Doping

- Advantages
 - Low toxicity (POCl₃, Bromines, ® 🕺)
 - Easy to handle
 - Used dopants
 - P (Phosphorous) ® type n⁺
 - B (Boron) ® type p⁺

Example of profile obtained to fabricate a p-n junction

Metalization Process

- Application ® contacts, wiring, vias,
 - **Deposition methods:**
 - Physical
 - e-gun
 - sputtering
 - thick film (silk-screen)
 - Chemical
 - CVD (Chemical Vapor Deposition)
 - Electrochemical
- Patterning
 - Chemical etch
 - Liftoff technique

Chemical x Liftoff

Si wafer

1000

.....

Open window

Plasma Etching (RIE)

- Application
 - Window opening, channels
- Operation principle
 - Low pressure Plasma discharge
 - Gases: SF₆, C₂F₆,O₂, Cl₂,...

 SF_6 Si $\rightarrow \sim 1,4 \ \mu\text{m/min}$ Resist $\rightarrow 0,2 \text{ to } 0,4 \ \mu\text{m/min}$

- Original gases are broken into ionized reactive species
- Masking (for SF₆ plasma protection)
 - Resist
 - Advantages: <u>no</u> charge built up
 - Disadvantage: high etch rate
 - Metal
 - Advantages: low etch rate
 - Disadvantage: charge built up

Device Obtained

Device Characterization

Electrical Characterization

Temperature Calibration

Thermal behavior under excitation

Pulse : 0,6 μ W $\rightarrow \Delta T \sim 1,5 \circ C$ $\rightarrow Res.: 44\mu^{\circ}C$

Gas Measurements

Tests for $H_2 + O_2 \rightarrow H_2O$ reaction detection

Effects of thermal conductivity detected

Diode Temperature Change with Different Gases Vres=0.965 V - s4_ga010

Thermal properties

 N₂
 0,02352 W/m°C
 O₂
 0,02396 W/m°C
 Dk_{N2®O2} = + 1,87 %
 Dk_{O2®N2} = - 1,84 %

Measurement of pure gases

Measurement of mixed gases

(12) United States Patent Saul et al.

(54) MULTI-PURPOSE INTEGRATED INTENSIVE VARIABLE SENSOR

- (75) Inventors: Cyro K. Saul, Centro Curitiba (BR); Jay N. Zemel, Jenkintown, PA (US)
- (73) Assignce: The Trustees of the University of Pennsylvania, Philadelphia, PA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 09/263,145
- (22) Filed: Mar. 5, 1999

Related U.S. Application Data

- (60) Provisional application No. 60/077,086, filed on Mar. 6, 1998.

(10) Patent No.:	US 6,290,388 B1
(45) Date of Patent:	Sep. 18, 2001

5,311,447	*	5/1994	Bonne
5,348,394	+	9/1994	Hori et al
5,406,841	*	4/1995	Kimura 73/204.26
5,600,174		2/1997	Reay et al 257/467
5,623,097		4/1997	Horiguchi et al 73/204.15
5,644,068		7/1997	Okamoto et al 73/25.03

OTHER PUBLICATIONS

Denlinger et al., "Thin Film Microcalorimeter for Heat Capacity Measurements from 1.5 to 800K," *Rev. Sci. Instr.*, Apr. 1994, 65(4), 946–959.

Gajda et al., "Applications of Thermal Silicon Sensors on Membranes," Sensors Actuators-A, 1995, 49, 1-9.

Klaassen et al., "Diode–Based Thermal RMS Converter with On–Chip Circuitry Fabricated Using CMOS Technology," Sensors Actuators–A, 1996, 52, 33–40.

Scidel et al., "Anisotropic Etching of Crystalline Silicon in Alkaline Solutions," J. Electrochem. Soc., Nov. 1990, 137(11), 3612–3626.

Vossen et al., "Thin Film Processes," Academic Press, New York, 1978.

* cited by examiner

ALL RIGHTS RESERVED http://www.cartoonbank.com

"Microfabrication is the art of learn how <u>not to do</u> each of all steps of the process."

Acknowledgements

SUB PROGRAMA IX Microelectrónica

RED IX.I: TESEO "Tecnologías para el Desarrollo de Sensores y Microsistemas"