LTCC TECHNOLOGY FOR MESO-SYSTEMS

MÁRIO RICARDO GÓNGORA-RUBIO,
WORKSHOP DE TECNOLOGIAS PARA MICROSSISTEMAS E SENSORES
IPT, SÃO PAULO, BRAZIL
2003
PRESENTATION OUTLINE

1. Introduction to LTCC Technology
 – Ceramic Interconnections
 – What is LTCC
 – Technology Advantages
 – Material Systems

2. LTCC Processing
 – Processing steps
 – Tape Machining
 – Lamination
 – Sintering
 – Bonding to other materials
 – Sagging Problem

3. Photo Patterned Processes
 – Photo Definable Thick Films
 – Photo Sensitive Thick films
 – Fodel Compositions

4. New LTCC Systems
 – Zero Shrinkage Tapes
 – LTCC on Metal
 – PI-LTCC

5. Advanced Packaging Techniques
 – 2D Packaging techniques
 – Flip-chip & BGA packaging
 – 3D Packaging Techniques
 – Modular 3D Packaging
PRESENTATION OUTLINE

6. LTCC Technology for Microelectronics
 - MCM devices
 - Buried Passives
 - HF & Microwave Devices

7. LTCC for MEMS/MST
 - MST Introduction
 - LTCC for MST

8. Meso Systems Devices and Applications
 - Sensors
 - Actuators
 - Microfluidic devices
 - Meso-Systems

9. Conclusions
1. INTRODUCTION TO LTCC TECHNOLOGY

- Ceramic Interconnections
- What is LTCC
- Technology Advantages
- Material Systems
CERAMIC INTERCONNECT TECHNOLOGY

Source: Green Tape Application Group
COST GAP NARROWS

COST ($/in2/layer)

MicroVia
HDI PWB

ML PWB

PWB

Year

LTCC

Source: Green Tape Application Group

WORKSHOP DE TECNOLOGIAS PARA
MICROSSISTEMAS E SENSORES

MGR-2003 -6
WHAT IS LTCC ?

– LTCC was originally developed by Hughes and DuPont for Military Systems.
– The (LTCC) technology can be defined as a way to produce multilayer circuits with the help of single tapes, which are to be used to apply conductive, dielectric and / or resistive pastes on.
– These single sheets have to be laminated together and fired in one step all. This saves time, money and reduces circuits dimensions. An other great advantage is that every single layer can be inspected (and in the case of inaccuracy or damage) replaced before firing; this prevents the need of manufacturing a whole new circuit.
– Because of the low firing temperature of about 850°C it is possible to use the low resistive materials silver and gold.

– The size of the LTCC board can be reduced considerably because of the 3D structure and passive components such as capacitors, inductors and resistors can be embedded, which facilitates a high degree of integration.
LTCC APPLICATIONS

– LTCC technology provides low-cost, high passive elements (R, L, C) integration and good electrical properties with the possibility to use silver, gold, palladium, platinum as conductors.
– This is not achievable with HTCC technology, where the firing temperature exceeds 1000°C, which is only compatible with tungsten or molybdenum conductors.
– The advantages of the LTCC technology make it suitable for a number of applications, i.e.:
 • RF Modules
 • Mobile phone
 • Blue tooth
 • Microwave & Opto-electronic modules
 • Automotive, Medical & Military
 • Sensor packaging
 • Microsystems
TECHNOLOGY TRENDS

Today
- Power Mosfet LDMOS
- Digital CMOS
- Analogue Bipolar
- Package
- Package
- Package

Printed Circuit Board

Sub System

Passive Components

Tomorrow
- Mixed Mode
- Digital
- Analogue
- Power
- Flip Chip Wirebond

LTCC
- Thick Film
- Embedded
- Passives
- Sensor

Module

BGA

WORKSHOP DE TECNOLOGIAS PARA MICROSSISTEMAS E SENsoRES
TECHNOLOGY ADVANTAGES (1)

• **Process**
 – Parallel process (high yield)
 – Single sinter step for all inner metallizations (cofiring)

• **Electrical**
 – Low k compared to HTCC
 – Low dielectric loss / no tremendous increase at microwave frequencies
 – Higher conductivity compared to HTCC (factor 2-4)
 – Number of signal layers almost unlimited
 – High wiring density (vias 2 - 4 x smaller than Thick Film vias)
 – Good control of dielectric layer thickness prerequisite for impedance control
 – Passive integration possible
 – Compatible to 7 decades of postfire resistors

• **Thermal**
 – High resistance against ambient working temperatures (up to 350°C)
 – Good thermal conductivity compared to PCBs (factor 10)
 – Good match to semiconductor TCE's

• **Mechanical**
 – Good ability to mechanical structuring (drilling, cutting, punching) in green state
 – High mechanical strength of interconnecting structures
 – Bare dice can be placed in cavities
 – Very good hermeticity of the substrate (substrate can be part of the housing)
TECHNOLOGY ADVANTAGES (2)

- **Low cost technology**
 - Collective process adapted to automated manufacturing equipment
 - Only one firing step for all internal layers
 - Silver based conductors
 - Firing temperature below 1000°C

- **High reliability**
 - Ceramic based materials
 - Temperature range of [−55°C, +150°C]
 - Hermetic dielectric
 - Low thermal coefficient of expansion
 - Compatibility with bare dies

- **High electrical performance**
 - Various tape thickness (35 to 210 µm): low parasitic line capacitance
 - Low resistivity conductor (Ag or Au – 3 mΩ/square)

- **High flexibility**
 - Compatibility with a wide range of assembly techniques
 - Bare dies: wire bonding, Flip chip,
 - Packaged devices: SMT
 - Packaging capability (PGA, LGA, BGA, QFP)
 - Complex shape of substrate
 - Cavities

- **High integration density**
 - Conductor linewidth down to 50 µm
 - Buried via structures
 - Via diameter down to 150 µm
 - Via pitch down to 300 µm
 - High number of conductive layers: up to 24
 - Double sided substrate capability
 - Printed resistors (top or bottom)
 - Integrated packaging capability
 - Buried passive components
The following companies offer LTCC tapes for various applications.

- **DuPont**
 - 951
 - 943
 - ElectroScience Laboratories (ESL)
 - 41110-25C
 - 41010-25C
 - 41020-25C
 - 41110-70C
 - 41020-70C
- **Ferro**
 - A6M
 - A6S
- **Heraeus**
 - CT2000
 - CT700
 - CT800
- **ElectroScience Laboratories (ESL)**
 - 41110-25C
 - 41010-25C
 - 41020-25C
 - 41110-70C
 - 41020-70C
- **Kyocera**
 - GL550
 - GL660
- **Northrop Grumman**
 - "Low K"
- **Nikko**
 - Ag2
 - Ag3
- **Samsung**
 - TCL-6A
 - TCL-7A
2. LTCC PROCESSING

- Processing steps
- Tape Machining
- Lamination
- Sintering
- Bonding to other materials
- Sagging Problem
LOW TEMPERATURE CO-FIRED CERAMICS (LTCC)

- Glass-ceramic composite materials
- The ceramic filler is usually alumina, Al$_2$O$_3$
- The usual composition also includes a glass frit and an organic binder (plasticizer and anti-flocculant)
- Called green tape before firing and sintering
LTCC PROCESSING SCHEDULE

Source: Thales Microsonics
• **Materials Preparation**

 – LTCC Ceramic tape materials are prepared by milling precise amounts of raw materials into a homogeneous slurry.

 – This mixture is principally of ceramic/glass powders with controlled particle sizes with fluxes and small amounts of organic binders and solvents.

 – This slurry is poured onto a carrier and then passed under a blade to produce a uniform strip of specific thickness.

 – When dried, this strip becomes a ceramic-filled “Green ceramic tape” which is easily handled in rolls or sheets for unfired processing.
LTCC MANUFACTURING PROCESS (2)

• Tape Preparation
 – Cutting tape
 – Pre-Conditioning in the furnace
 – Punching or burning registration holes
 – Removing Mylar-tape

• Blanking
 – A blanking die is used to create orientation marks and the final working dimension of the green sheets.
LTCC MANUFACTURING PROCESS (3)

- **Via Machining**
 - Using high-speed mechanical punching with a matrix tool, Laser System, CNC or JVE.

- **Via Filling**
 - Performed using an thick film screen printer with a stencil metal mask.
 - Registration is performed using a vision system.
LTCC MANUFACTURING PROCESS (4)

• **Paste Printing**
 – Resistor, conductor and dielectrics deposits are performed using an automatic thick film screen printer with mesh screens.

• **Collating**
 – All layers will be collated and stacked with a special tool and will be fixed together to avoid misalignment.
 – Can be performed using a vision system for alignment.
LTCC MANUFACTURING PROCESS (5)

• **Laminating**
 – Accomplished using uniaxial or isostatic lamination in a specially designed thermal press
 – Temperature for lamination 100 °C
 – Laminating pressure is 3000 PSI
 – Typical cycle time is 10 minutes.

• **Pre-Cutting**
 – Laminates are pre-cut with a hot blade, meeting the panel drawing specifications.
• **Co-Firing**
 - Made in a belt or special furnace at a peak temperature of 850°C and a dwell time of 30 minutes.
 - The typical cycle time is 3 hours.
LTCC MANUFACTURING PROCESS (7)

• Dimensional Measurements /Electrical Test:
 – Panel and circuit size can be checked with automatic measurement vision system. Electrical resistance test is performed with an automatic system with probe card.

• Final Inspection:
 – Optical, Laser and acoustic inspection techniques are performed on completed parts in accordance with the applicable standards.
Mechanical Machining of Ceramic Tapes

Machined Samples

PUNCHING
- Circular or square shape
- Smallest size 0.004” (~100 microns)
- Machining of curved features is difficult
- Partial depth machining cannot be done

CNC MILLING
- Smallest size (~150 microns)
- Machining of curved features is easy
- Partial depth penetration facilitating shallow channels and thin membranes
- Vacuum chuck holder or wet tape is used to fix tape
LASER MACHINING OF CERAMIC TAPES

Nd-Yag Laser
- Thermal machining process

Excimer Laser
- Smallest size: ~10 microns
- No thermal damage (adiabatic process)
- Machining of whole feature at once using mask
- Partial depth penetration facilitating shallow channels and thin membranes

Schematic of the Laser machined hole

Nd-Yag Laser machined sample
(~150 micron wide channel, 20X)

Excimer Laser machined sample
(~40 micron holes, 20X)

Yag Laser Machined Via

WORKSHOP DE TECNOLOGIAS PARA MICROSSISTEMAS E SENSORES

MGR-2003-24
TAPE JET VAPOR ETCHING

- A jet of acetone dissolves the organic binder
- The alumina grains are removed by momentum transfer
- Computer controlled xyz station and valves
- Morphology controlled by processing parameters: pressure, temperature, distance to sample, solvent, nozzle size and diameter
ADVANTAGES OF JET VAPOR ETCHING

Features as small as 10µm has been obtained

- **Rapid prototypes**
 - More flexible than traditional punching technique
 - One can do partial cavities and continuous borders when machining long channels
 - Processing and instrumentation costs are a fraction of conventional punch and die process
Lamination Process

Thermocompression

Cold Low Pressure

before pressing

after pressing

Tape 1

Tape 2

Double Sided Adhesive Tape

Area of Adhesion

Area of Adhesion

200μm

200μm
LAMINATION INDUCED DEFORMATION

ABAQUS FEA Simulation

Lamination pressure = 3000 psi

Press

Three-layered Ceramic Tape Laminate

Sample deformed under pressure

Maximum deformation (µm)

Lamination-induced deformation vs. Lamination Pressure

second order fit
data

Lamination pressure (psi)
- Firing induced deformation as a function of temperature
COMPENSATION USING FUGITIVE PHASE MATERIALS (GRAPHITE PASTE)

Sintering profile

Sintering Mechanism

Without graphite

With graphite

Temperature (°C)

30 min

Ramps of: 10 °C/min

Time (min)

In air

In N₂

In air

45 min

5 min

850

650

350

Without graphite

With graphite
BONDING OF LTCC TAPES TO OTHER MATERIALS

LTCC to Glass

LTCC to Alumina
MULTI-LAYERED STRUCTURES WITH GLASS AND CERAMIC TAPES

Schematic

SEM of the Sample
• Z - shrinkage behavior in a multilayer structure under constrained lamination and sintering.
THIN AND THICK FILM COMPATIBILITY WITH LTCC TAPES

100 nm Aluminum PVD deposited thin film

15 µm screen-printed piezo- resistor
3. PHOTO PATTERNED THICK FILM PROCESSES

- Photo Defined Thick Film
- Photo Sensitive Thick Film
- Fodel Compositions
PHOTO THICK FILM TECHNIQUES

– Photodefined Thick Film
 • Paste (normally conductor) is optimized for etching.
 • Patterned after firing, using a resist, then etched.
PHOTO DEFINED THICK FILM

Ion beam etched
10µ lines/spaces

35µ lines/spaces

50µ lines/spaces

50µ via

IPT
Instituto de Pesquisas Tecnológicas

WORKSHOP DE TECNOLOGIAS PARA
MICROSSISTEMAS E SENSORES

MGR-2003 -37
PHOTO SENSITIVE THICK FILM

• Photosensitive Thick Film
 – Paste contains photosensitive material.
 – Patterned by exposing and washing before firing.

• Thick film on Ceramic, combined with photo-processing
 – Stability of thick film
 – Precision of thin film
 – Mass production capability of laminates and IC’s

• High performance conductor & dielectric
 – Ideal for microwave
• Fodel® materials incorporate photosensitive polymers in the thick film.
• Circuit features are formed using UV light exposure through a photomask and development in an aqueous process.
• Fodel dielectrics can pattern 75 micron vias on a 150 micron pitch, Fodel conductors can pattern 50 micron lines on a 100 micron pitch.
• Fodel materials extend the density capability of the thick film process to allow densities typically achievable using more costly thin film processes.
4. NEW LTCC TAPE SYSTEMS

- Zero Shrinkage LTCC Tapes
- LTCC on Metal (LTCC-M)
- Photo Imageable LTCC (PI-LTCC)
ZERO SHRINKAGE LTCC TAPES

– Recent developments relating to the formulation, processing and manufacturing of ceramic and glass composites, which do not shrink upon co-firing to the degree of ordinary LTCC materials, a slight shrinkage (< 2%) can be controlled to a very tight tolerance of +/- 0.01%.

– Because ZR tapes exhibits a near zero shrinkage and zero shrinkage tolerance upon firing, precise feature locations are maintained in the X, Y, and Z axis's and yield improvements of over 30% can be realized when compared to conventional materials systems.

– Some properties include the embedding and co-firing of: discrete components such as ceramic chip capacitors for true passive integration, ceramic heatspreaders with integral heat pipes for thermal management (>2000 W/mK)

– The main difference between Zero Shrinkage tapes and all other LTCC tapes is its unique shrinkage properties during firing.

– Free sintered this tapes densifies by shrinking in the z-axis.

– Key Benefits are:
 • Near zero (<0.2% ± 0.05%) x-y shrinkage with no added processing steps
 • Compatible with co-fired solderable conductors
 • Cavity structures cut into the green tape show no x-y shrinkage or distortion after firing
 • Lead and cadmium free
 • High Q
LTCC ON METAL (LTCC-M)

- LTCC-M Technology combines conventional LTCC technology with a metal base to provide constrained sintering. Constrained sintering leads to almost zero shrinkage in the x-y plane during the firing process step allowing the accurate placement of embedded components such as resistors, capacitors, transmission lines etc.

- The almost zero x-y shrinkage also leads to ruggedness, improved heat sinks and allows complex cavities with metal ground.
The PI-LTCC consists of a mixture of photo-polymer organics and ceramic / glass powders doctor bladed onto a 3 mils Mylar film.

The Photo Imageable LTCC tape offers the advantage of economy by fast and efficient processing combined with the convenience of having an LTCC system very similar in properties to the conventional compositions.

UV light (365 nm) passes through a photo mask to expose specific areas of the tape.

The exposed areas will remain after processing and the unexposed area will be dissolved with a 1% aqueous sodium carbonate solution.

The rest of the processing is similar to that of the conventional 951 series LTCC tape.
VIAS IN PI-LTCC

- A cluster of vias, 3 mils each with a pitch of 12 mils from a mask containing 18,000 vias (3”X 3” artwork).
- Note that the time required for such a task is dependent only on the tape resolution and the size capacity of the processing equipment.
5. ADVANCED PACKAGING TECHNIQUES

- 2D Packaging techniques
- Flip-chip & BGA packaging
- 3D Packaging Techniques
- Modular 3D Packaging
FEATURE LTCC TERMINOLOGY (CROSS SECTION)

Source: Thales Microsonics
LTCC ADVANCED PACKAGING TECHNIQUES

- Low Temperature Cofired Ceramic technology (LTCC) is adapted to high performance assembly and packaging techniques like flip-chip and BGA.
- The combination of this 3 technologies allows the design and fabrication of very high density and cost effective Single Chip and Multi Chip Modules.

- Flip Chip BGA CSP

Source: Thales Microsonic
FLIP-CHIP ON LTCC

• Characteristics of flip-chip on LTCC
 – Peripheral and area I/O pad distribution
 – I/O pitch down to 250 µm (125 µm bump)
 – 3 possible bonding techniques
 • SnPb solder reflow
 • thermocompression
 • conductive adhesive

• Advantages of flip-chip on LTCC
 – Direct bonding on top vias (no additional metallization required)
 – LTCC CTE very close to silicon CTE
 – High routing capability of the LTCC technology thanks to:
 • buried via structures (diameter down to 100 µm)
 • line pitch down to 200 µm
 • high number of layers
LTCC DESIGN RULES for FLIP-CHIP

Flip Chip Assembly

Flip Chip on co-fired AgPd conductor pads using solder reflow.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgPd pad width</td>
<td>Wc</td>
<td>150 µm min.</td>
</tr>
<tr>
<td>AgPd pad pitch</td>
<td>Pc</td>
<td>250 µm min.</td>
</tr>
<tr>
<td>Passivation opening</td>
<td>Op</td>
<td>150 µm min.</td>
</tr>
<tr>
<td>Passivation width</td>
<td>Wp</td>
<td>200 µm min.</td>
</tr>
</tbody>
</table>

Figure 1: Flip chip assembly

Source: Thales Microsonics

Flip Chip Assembly on LTCC Structures for solder reflow techniques
BALL GRID ARRAY WITH LTCC

• Characteristics of BGA with LTCC
 – Ball pitch from 0.75 mm to 1.5 mm
 – Body size from 5 x 5 mm² to 40 x 40 mm²
 – Number of I/Os up to 961
 – High temperature solder balls
 – Adapted to single and multi-chip module design
 – Large range of techniques for die protection
 • Glued metallic or ceramic lid
 • Epoxy overmolding or glob top
 • Brazed hermetic Kovar ring

• Advantages of BGA with LTCC
 – High design flexibility
 – Very high number of I/Os at reasonable pitch
 – High routing capability of the LTCC
LTCC DESIGN RULES for BGA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball pitch</td>
<td>Bp</td>
<td>1.27 mm</td>
</tr>
<tr>
<td>Ball diameter</td>
<td>Bd</td>
<td>0.89 mm</td>
</tr>
<tr>
<td>Micro-cavity diameter</td>
<td>MCd</td>
<td>0.57 mm</td>
</tr>
<tr>
<td>Micro-cavity thickness</td>
<td>MCt</td>
<td>0.130 mm</td>
</tr>
<tr>
<td>Solder pad diameter</td>
<td>SPd</td>
<td>0.77 mm</td>
</tr>
<tr>
<td>Solder pad thickness</td>
<td>SPt</td>
<td>20 μm min</td>
</tr>
<tr>
<td>Solder pad material</td>
<td>PdAg</td>
<td></td>
</tr>
<tr>
<td>Via material for layer 2</td>
<td>PdAg</td>
<td></td>
</tr>
<tr>
<td>Conductor & via material for other inner layers</td>
<td>Ag</td>
<td></td>
</tr>
<tr>
<td>Substrate thickness</td>
<td>St</td>
<td>0.9 mm min</td>
</tr>
<tr>
<td>Ball to package centre distance</td>
<td>BCd</td>
<td>20 mm max</td>
</tr>
<tr>
<td>Matrix area</td>
<td>MA</td>
<td>30 mm x 30 mm max</td>
</tr>
<tr>
<td>Substrate edge to ball distance</td>
<td>SEBd</td>
<td>0.5 mm min</td>
</tr>
</tbody>
</table>

Source: Thales Microsonics
LTCC-BGA

Part and Cross Section – 30 mil ball

Source: National Semiconductors
COMBINATION OF BGA, FLIP CHIP AND LTCC TECHNOLOGIES

Source: Thales Microsonic
3D PACKAGING

Stacked Packages
Packaged memory chips are commonly stacked on top of each other to supercharge memory in equipment ranging from cell phones up to high-end computers.

Stacked Chip-Scale Package
More compact are packages that stack bare die and wire-bond them to pads that connect to the solder balls leads on the substrate. The package is connected to a circuit board via the solder balls.

Source: Scientific America
MODULAR SYSTEM INTERFACES

Source: Fraunhofer Institute
LTCC-TB-BGA (TOP-BOTTOM- BGA)

Source: Fraunhofer Institute
ASSEMBLY OF A LTCC CARRIER

Source: Fraunhofer Institute
OPTICAL & FLUIDIC INTERFACES

Source: Fraunhofer Institute
SOME 3D LTCC MODULES

- 16 Bits Microcontroller
- Flow Sensor

Figure 17: Design of a Flow Rate Sensor Module (LTCC)
6. LTCC TECHNOLOGY FOR MICROELECTRONICS

- MCM devices
- Embedded Passives
- HF & Microwave Devices
LTCC APPLICATIONS IN MCM
LTCC TB-BGA for MCM

<table>
<thead>
<tr>
<th>size</th>
<th>12.5 x 12.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>use</td>
<td>9.6 x 11.0</td>
</tr>
<tr>
<td>pin count</td>
<td>48</td>
</tr>
<tr>
<td>BGA pitch</td>
<td>1.27</td>
</tr>
</tbody>
</table>

units: mm

Source: Fraunhofer Institute
EMBEDDED PASSIVES

Integrated Passive Components, IPC’s, generally fall into three (3) categories:

- Resistors: Generally comprised of ruthenium oxide (RuO₂) or tantalum oxide (Ta₂O₅)
- Capacitors: Generally comprised of silicates or titanates
- Inductors: Generally metallic conductors in some spiral shape to provide inductance
LTCC AND INTEGRATED PASSIVES TECHNIQUES

- LTCC displays the widest range of dielectric properties available for any packaging technology, enabling the incorporation of passive components.
- Furthermore, LTCC technology can incorporate resistive material thus enabling the integration of both resistors and capacitors within the substrate, as embedded passives.

Source: Kyocera
EMBEDDED RESISTORS

• Embedded Resistors can be fabricated from thick film or Photo thick film pastes.

• There two types of embedded resistors:
 – Microplanar passive
 – Microvolume passive

• High Voltage Pulse trimming can be used to modify resistor value
INTEGRATED RF/MW LTCC MODULES

- Integrated Passives
- 3-D designs
- Controlled Impedance
- Hi Q
- Size reduction
- Direct Chip Attach
- Rapid Prototypes

Source: Applied Microwave & RF July/Aug 1998 pg. 45 Murata Electronics
LTCC RF Applications

- VCO/Freq. Synthesizer
- Antenna
- Filter
- LNA & Filter
LTCC MW APPLICATIONS

- Bluetooth modules
- 77 GHz planar antenna substrates
- Transceiver Modules
- Spiral Antenna

WORKSHOP DE TECNOLOGIAS PARA MICROSSISTEMAS E SENsores

MGR-2003-69
7. LTCC FOR MEMS/MST

• MST Introduction
• LTCC for MST
MODULAR PACKAGING CONCEPTS COMPARISON

<table>
<thead>
<tr>
<th>Feature</th>
<th>2D Integration</th>
<th>3D Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>packaged</td>
<td>unpackaged</td>
</tr>
<tr>
<td>Size and weight</td>
<td>high</td>
<td>higher than 3D</td>
</tr>
<tr>
<td>Silicon efficiency</td>
<td>very good</td>
<td>good</td>
</tr>
<tr>
<td>Power consumption (parasitic C's)</td>
<td>high</td>
<td>rather high</td>
</tr>
<tr>
<td>Noise</td>
<td>not optimal</td>
<td>not optimal</td>
</tr>
<tr>
<td>Flexibility / universality</td>
<td>restricted</td>
<td>restricted</td>
</tr>
<tr>
<td>Use of market-available MEMS</td>
<td>feasible</td>
<td>difficult</td>
</tr>
<tr>
<td>Standardization of interfaces</td>
<td>feasible</td>
<td>difficult</td>
</tr>
<tr>
<td>Additional packaging steps</td>
<td>necessary</td>
<td>not necessary</td>
</tr>
<tr>
<td>Protection against environment</td>
<td>high</td>
<td>almost none</td>
</tr>
<tr>
<td>Need for cleanroom environment</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
MST APPLICATION FIELDS

• Automotive / Transportation
• Information Technology, Peripherals
• Telecommunications
• Medical / Biomedical
• Environment / Industrial Processes
• Household Appliances / Entertainment
• Other Applications (Defence, Aerospace)
SENSORS USING GREEN CERAMIC TAPES

- **Displacement and attitude sensors**
 - LVDT type displacement sensor
 - Attitude sensor using ferrofluids
 - Eddy current proximity sensor

- **Basic Micro-Fluidic Devices**
 - Micro-channels
 - Critical orifices
 - Micromixers
 - Hot Plates
 - Micropumps

- **Thermal Flow Sensor**
 - Flow sensor using thermal loss measurement

- **Pressure Sensors**
 - Load Cells
 - Differential pressure sensors
 - High temperature pressure

- **Chemical Sensors**
 - SNO₂ Gas Sensor
 - PH Sensor
 - Electrochemical Electrodes
CONDUCTIVITY SENSORS

INTERDIGITAL ELECTRODES

FABRICATED DEVICES
THERMAL FLOW SENSOR WITH GREEN CERAMIC TAPES

• Thermal methods display some advantages for implementing flow sensors as:
 – Thermal isolation between structure and support;
 – Low thermal capacity improving response times;
 – Small dimension devices;
 – Integration in a micro-system or MEMS scheme.
LTCC FLOW SENSORS

Experimental Set-Up

Device Lay-out

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Cross-section A-A

Fabricated Device

Vias
Bridge
Cavity
Screen printed thermistors

Nitrogen Supply
Volumetrics Mass Flow Controller
Pressure Regulator
Device under Test

Hot Plate+ Cooper Coil For Fluid Heating

Dissipation factor Vs. Flow velocity
\[k = 18.79 + 31.03 \times e^{-v_f / 1.66} \] for exponential regression

Dissipation Factor (Watt/Kelvin)
Flow Velocity (SLM)
BASIC MICROFLUIDIC DEVICES

- Micro-channels;
- Critical Orifices, for passive flow control;
- Mixers;
- Hot plates;
- Liquid Cooling Devices.
• Poiseuille equation relates linearly pressure drop with flow in reduced geometry channels.
In Microchannels of minute dimensions Reynolds Number are very low, making difficult liquid mixing.

- Microchannel corners can be used as mixers.
LTCC VORTEX MIXER

LTCC Layer

Streamline Simulation
HOT PLATES

• With few layers it is possible to get a simple hot plate.

• Surface heating Vs. current in hot plate

![Graph showing temperature at the surface of the coil for various excitation currents.](image)

- Layer 1
- Layer 2
- Layer 3
- Layer 4
- Layer 5
- Layer 6
- Base

Temperatura na superfície da bobina para diversas correntes de excitação

- 50mA
- 100mA
- 150mA

Distância do centro da Bobina (mm)
LIQUID COOLING SYSTEMS

- Thermal management is an important problem in electronic packaging.
- LTCC thermal vias and microchannels can deliver liquid cooling systems with thermal dissipation of up to 50 W/cm².
LTCC Hybrid Actuators (Microvalve)

8. **MESO SYSTEMS, DEVICES AND APPLICATIONS**

- Sensors
- Actuators
- Microfluidic devices
- Meso-Systems
- Micro-Combustor Systems
- Lab on a Credit Card
MST APPLICATIONS (MICROFILTERING)

IN: Fluid, large and small particles

Large particles collect at end of top chamber

FPW device

glass

glass

OUT: Fluid and small particles

(Not to scale)
MST APPLICATIONS (BIO-SEPARATION)

(a)

(b)

(c)

(d)

(e)

- Magnetic bead with antibody
- Target antigen
- Antigens
MST APPLICATIONS
(PCR IN CONTINUOUS FLOW)
LTCC MANIFOLDS FOR MICROFLUIDICS
LTCC Applications on MICROFLUIDICS
FLOW INJECTION ANALYSIS (FIA) FOR WATER STUDIES

• Sensitivity and selectivity of the sensor can be optimized
• Time for analysis is minimized
• Waste and sample size are minimized
Fabricated FIA Manifold with sensor electrodes
Lab on a Credit Card (AQUAFOS)

Preconcentration Phase
- Sample
- Preconcentration column
- Waste
- Valve
- Peristaltic pump
- Waste
- ESI
- REF
- Valve
- Peristaltic pump

Elution Phase
- Sample
- Preconcentration column
- Waste
- Valve
- Peristaltic pump
- Waste
- ESI
- REF
- Valve
- Peristaltic pump
9. CONCLUSIONS

- The brief description given here demonstrates how LTCC technology is a suitable material for the fabrication of Meso systems.

- One of the important features of LTCC technology is the possibility of fabricating three-dimensional structures using multiple layers of LTCC tapes.

Thanks for your attention